Spin and orbital Edelstein effects in a two-dimensional electron gas: Theory and application to SrTiO<sub>3</sub> interfaces

Abstract

The Edelstein effect produces a homogeneous magnetization in nonmagnetic materials with broken inversion symmetry which is generated and tuned exclusively electrically. Often the spin Edelstein effect-that is, a spin density in response to an applied electric field-is considered. In this paper we report on the electrically induced magnetization that comprises contributions from the spin and the orbital moments. Our theory for these spin and orbital Edelstein effects is applied to the topologically nontrivial two-dimensional electron gas at SrTiO3 interfaces. In this particular system the orbital Edelstein effect exceeds the spin Edelstein effect by more than one order of magnitude. This finding is explained mainly by orbital moments of different magnitude in the Rashba-like split band pairs, while the spin moments are of almost equal magnitude

    Similar works