62 research outputs found

    IberWQ: A GPU Accelerated Tool for 2D Water Quality Modeling in Rivers and Estuaries

    Get PDF
    Este artigo inclĂşese no nĂşmero especial "Modelling Flow, Water Quality, and Sediment Transport Processes in Coastal, Estuarine, and Inland Waters"[Abstract] Numerical models are useful tools to analyze water quality by computing the concentration of physical, chemical and biological parameters. The present work introduces a two-dimensional depth-averaged model that computes the most relevant and frequent parameters used to evaluate water quality. High performance computing (HPC) techniques based on graphic processing unit (GPU) parallelization have been applied to improve the efficiency of the package, providing speed-ups of two orders of magnitude in a standard PC. Several test cases were analyzed to show the capabilities and efficiency of the model to evaluate the environmental status of rivers and non-stratified estuaries. IberWQ will be freely available through the package Iber.European Commission; INTERREG-POCTEP; 0034_RISC_ML_6_EXunta de Galicia; ED431C 2017/64-GRCXunta de Galicia; ED481A-2017/31

    An accelerated tool for flood modelling based on Iber

    Get PDF
    Este artigo inclúese no número especial "Selected Papers from the 1st International Electronic Conference on the Hydrological Cycle (ChyCle-2017)"[Abstract:] This paper presents Iber+, a new parallel code based on the numerical model Iber for two-dimensional (2D) flood inundation modelling. The new implementation, which is coded in C++ and takes advantage of the parallelization functionalities both on CPUs (central processing units) and GPUs (graphics processing units), was validated using different benchmark cases and compared, in terms of numerical output and computational efficiency, with other well-known hydraulic software packages. Depending on the complexity of the specific test case, the new parallel implementation can achieve speedups up to two orders of magnitude when compared with the standard version. The speedup is especially remarkable for the GPU parallelization that uses Nvidia CUDA (compute unified device architecture). The efficiency is as good as the one provided by some of the most popular hydraulic models. We also present the application of Iber+ to model an extreme flash flood that took place in the Spanish Pyrenees in October 2012. The new implementation was used to simulate 24 h of real time in roughly eight minutes of computing time, while the standard version needed more than 15 h. This huge improvement in computational efficiency opens up the possibility of using the code for real-time forecasting of flood events in early-warning systems, in order to help decision making under hazardous events that need a fast intervention to deploy countermeasures.Water JPI—WaterWorks Programme, project Improving Drought and Flood Early Warning, Forecasting and Mitigation, IMDROFLOOD; PCIN-2015-243European Commission; project RISC_ML 034_RISC_ML_6_EXunta de Galicia; ED431C 2017/64-GRCXunta de Galicia; ED481A-2017/314Xunta de Galicia; ED481B-2018/020European Commission; IMDROFLOOD PCIN-2015-24

    SPH simulation of floating structures with moorings

    No full text
    The open-source code DualSPHysics is applied to simulate the interaction of sea waves with floating offshore structures, which are typically moored to the seabed, such as vessels, boats, floating breakwaters and wave energy converters (WECs). The goal is to develop a numerical tool that allows the study of the survivability of floating moored devices under highly energetic sea states, obtaining the optimum mooring layout to increase lifetime. The moorings are modelled by coupling DualSPHysics with MoorDyn, a lumped-mass mooring dynamics model. MoorDyn represents mooring line behaviour subject to axial elasticity, hydrodynamic forces in quiescent water, and vertical contact forces with the seabed. Calculated mooring tensions at the fairlead are added as external forces in order to compute the resulting response and motions of the floating structures in DualSPHysics. The coupled model has been validated against data from scale model tests generated during the experimental campaigns for the European MaRINET2 EsflOWC project. In order to evaluate the accuracy of the coupling implementation with the lumped-mass mooring model, free-surface elevation, motions of the floater and mooring tensions are numerically computed and compared to experimental data. Overall, the results demonstrate the accuracy of the coupling between DualSPHysics and MoorDyn to simulate the motion of a moored floating structure under the action of regular waves. Going forward, this modelling approach can be employed to simulate more complex floating structures such as floating wind turbines, buoys, WECs, offshore platforms, etc

    Reduced Nearshore Warming Associated With Eastern Boundary Upwelling Systems

    Get PDF
    Coastal marine biodiversity within eastern boundary upwelling systems (EBUS) is closely linked to the cooler sea temperatures associated with them. It has been suggested that global warming could lead to enhanced sea surface cooling in EBUS via the intensification of upwelling-favorable winds. Conversely, increased stratification and the widespread warming of the world’s oceans could drive these systems in the opposite direction. These competing mechanisms hold the potential for driving the thermal envelopes of EBUS toward – or away from – the thermal envelopes found outside EBUS, with likely contrasting implications for biodiversity conservation in each scenario. Here we characterize the patterns of net sea surface warming rates over more than three decades throughout the global ocean to evaluate if waters inside EBUS are changing differently from those outside EBUS. Results point to a trend of reduced warming inside EBUS, especially along the nearshore. We found that reduced net warming was prevalent in Pacific EBUS but restricted in Atlantic EBUS. In contrast, net warming in the coastal ocean outside EBUS was pervasive and generally associated with proximity to land. Our results suggest that EBUS have been responding to climate change differently from the rest of the global ocean, potentially buffering coastal biomes from decades of global warming

    Variability of coastal and ocean water temperature in the upper 700 m along the western Iberian Peninsula from 1975 to 2006

    Get PDF
    Temperature is observed to have different trends at coastal and ocean locations along the western Iberian Peninsula from 1975 to 2006, which corresponds to the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA). Reanalysis data are available at monthly scale with a horizontal resolution of 0.5° × 0.5° and a vertical resolution of 40 levels, which allows obtaining information beneath the sea surface. Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered here, since the most important changes in heat content observed for the world ocean during the last decades, correspond to the upper 700 m. Warming was observed to be considerably higher at ocean locations than at coastal ones. Ocean warming ranged from values on the order of 0.3 °C dec(-1) near surface to less than 0.1 °C dec(-1) at 500 m, while coastal warming showed values close to 0.2 °C dec(-1) near surface, decreasing rapidly below 0.1 °C dec(-1) for depths on the order of 50 m. The heat content anomaly for the upper 700 m, showed a sharp increase from coast (0.46 Wm(-2)) to ocean (1.59 Wm(-2)). The difference between coastal and ocean values was related to the presence of coastal upwelling, which partially inhibits the warming from surface of near shore water.publishe

    GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods.

    Get PDF
    Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability
    • …
    corecore