629 research outputs found
Electron concentration effects on the Shastry-Sutherland phase stability in Ce_{2-x}Pd_{2+y}In_{1-z} solid solutions
The stability of a Shastry-Sutherland ShSu phase as a function of electron
concentration is investigated through the field dependence of thermal and
magnetic properties of the solid solution Ce_{2-x}Pd_{2+y}In_{1-z} in the
antiferromagnetic branch. In these alloys the electronic (holes) variation is
realized by increasing concentration. The AF transition T_M decreases from
3.5K to 2.8K as concentration increases from y=0.2 to y=0.4. By applying
magnetic field, the ShSu phase is suppressed once the field induced
ferromagnetic polarization takes over at a critical field B_{cr} which
increases with content. A detailed analysis around the critical point
reveals a structure in the maximum of the dM/dB derivative, which is related
with incipient steps in the magnetization M(B) as predicted by the theory for
the ShSu lattice. The crossing of M(B) isotherms, observed in ShSu prototype
compounds, is also analyzed. The effect of substitution by is
interpreted as an increase of the number of 'holes' in the conduction band and
results in a unique parameter able to describe the variation of the magnetic
properties along the studied range of concentration.Comment: 8 pages, 11 figure
Exploring high temperature magnetic order in CeTi_1-xSc_xGe
Most of magnetic transitions related to Ce ordering are found below
T_ord~12K. Among the few cases exceeding that temperature, two types of
behaviors can be distinguished. One of them is related to the rare cases of Ce
binary compounds formed in BCC structures, with a quartet ground state, whose
degeneracy is reduced by undergoing different types of transitions mostly
structural. The other group shows evidences of itinerant character with the
outstanding example of CeRh_3B_2 showing the highest T_ord=115K. The second
highest ordering temperature has been reported for CeScGe with T_ord=47K, but
the nature of this magnetic state has not been investigated very deeply. In
order to shed more light into this unusual high temperature ordering we studied
the structural, magnetic, transport and thermal properties of CeTi_1-xSc_xGe
alloys in the stability range of the CeScSi-type structure 0.25<x<1 This system
presents a rich variety of magnetic behaviors along this concentration range,
with the magnetic ordering growing from ferromagnetic (FM) T_C~7K up to an
antiferromagnetic (AFM) transition at T_N=47K. The different regions show the
following characteristics: i) on the Ti rich side (0.25<x<0.50) it exhibits a
FM ground state (GS) with large saturation magnetization values M_sat up to
~1.15 mu_B. ii) Around x=0.60, the first crystal electric field excited doublet
starts to contribute to the GS magnetic properties. Furthermore an AFM
component with a connected metamagnetic transition appears. iii) At x=0.65 a
clear change in the GS nature is associated to a critical point above which the
GS properties can be described like for an itinerant system (with decreasing
M_sat) and an effective GS degeneracy N_eff=4. iv) For x>0.65, the magnetic
phase boundary splits into two transitions, with an intermediate phase
presenting incommensurate spin density waves features.Comment: 8 pages, 10 figure
Enhancing the Pierre Auger Observatory to the 10^{17} to 10^{18.5} eV Range: Capabilities of an Infill Surface Array
The Pierre Auger Observatory has been designed to study the highest-energy
cosmic rays in nature (E > 10^{18.5} eV). The determination of their arrival
direction, energy and composition is performed by the analysis of the
atmospheric showers they produce. The Auger Surface Array will consist of 1600
water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km
spacing. The aim of this paper is to show that the addition of a "small" area
of surface detectors at half or less the above mentioned spacing would allow a
dramatic increase of the physical scope of this Observatory, reaching lower
energies at which the transition from galactic to extragalactic sources is
expected.Comment: 21 pages, 5 figures, accepted for publication in Nucl. Instr. & Meth.
in Phys. Res.
Low temperature magnetic phase diagram of the cubic non-Fermi liquid system CeIn_(3-x)Sn_x
In this paper we report a comprehensive study of the magnetic susceptibility
(\chi), resistivity (\rho), and specific heat (C_P), down to 0.5 K of the cubic
CeIn_(3-x)Sn_x alloy. The ground state of this system evolves from
antiferromagnetic (AF) in CeIn_3(T_N=10.2 K) to intermediate-valent in CeSn_3,
and represents the first example of a Ce-lattice cubic non-Fermi liquid (NFL)
system where T_N(x) can be traced down to T=0 over more than a decade of
temperature. Our results indicate that the disappearance of the AF state occurs
near x_c ~ 0.7, although already at x ~ 0.4 significant modifications of the
magnetic ground state are observed. Between these concentrations, clear NFL
signatures are observed, such as \rho(T)\approx \rho_0 + A T^n (with n<1.5) and
C_P(T)\propto -T ln(T) dependencies. Within the ordered phase a first order
phase transition occurs for 0.25 < x < 0.5. With larger Sn doping, different
weak \rho(T) dependencies are observed at low temperatures between x=1 and x=3
while C_P/T shows only a weak temperature dependence.Comment: 7 pages, 7 figures. Accepted in Eur. J. Phys.
Underground Muon Counters as a Tool for Composition Analyses
The transition energy from galactic to extragalactic cosmic ray sources is
still uncertain, but it should be associated either with the region of the
spectrum known as the second knee or with the ankle. The baseline design of the
Pierre Auger Observatory was optimized for the highest energies. The surface
array is fully efficient above eV and, even if the hybrid
mode can extend this range below eV, the second knee and a
considerable portion of the wide ankle structure are left outside its operating
range. Therefore, in order to encompass these spectral features and gain
further insight into the cosmic ray composition variation along the transition
region, enhancements to the surface and fluorescence components of the baseline
design are being implemented that will lower the full efficiency regime of the
Observatory down to eV. The surface enhancements consist of a
graded infilled area of standard Auger water Cherenkov detectors deployed in
two triangular grids of 433 m and 750 m of spacing. Each surface station inside
this area will have an associated muon counter detector. The fluorescence
enhancement, on the other hand, consists of three additional fluorescence
telescopes with higher elevation angle () than the ones in
operation at present. The aim of this paper is threefold. We study the effect
of the segmentation of the muon counters and find an analytical expression to
correct for the under counting due to muon pile-up. We also present a detailed
method to reconstruct the muon lateral distribution function for the 750 m
spacing array. Finally, we study the mass discrimination potential of a new
parameter, the number of muons at 600 m from the shower axis, obtained by
fitting the muon data with the above mentioned reconstruction method.Comment: Astroparticle Physics 29 (2008) 461-47
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
- …