455 research outputs found

    Erratic Jet Wobbling in the BL Lacertae Object OJ287 Revealed by Sixteen Years of 7mm VLBA Observations

    Get PDF
    We present the results from an ultra-high-resolution 7mm Very Long Baseline Array (VLBA) study of the relativistic jet in the BL Lacertae object OJ287 from 1995 to 2011 containing 136 total intensity images. Analysis of the image sequence reveals a sharp jet-position-angle swing by >100 deg. during [2004,2006], as viewed in the plane of the sky, that we interpret as the crossing of the jet from one side of the line of sight to the other during a softer and longer term swing of the inner jet. Modulating such long term swing, our images also show for the first time a prominent erratic wobbling behavior of the innermost ~0.4mas of the jet with fluctuations in position angle of up to ~40 deg. over time scales ~2yr. This is accompanied by highly superluminal motions along non-radial trajectories, which reflect the remarkable non-ballistic nature of the jet plasma on these scales. The erratic nature and short time scales of the observed behavior rules out scenarios such as binary black hole systems, accretion disk precession, and interaction with the ambient medium as possible origins of the phenomenon on the scales probed by our observations, although such processes may cause longer-term modulation of the jet direction. We propose that variable asymmetric injection of the jet flow; perhaps related to turbulence in the accretion disk; coupled with hydrodynamic instabilities, leads to the non-ballistic dynamics that cause the observed non-periodic changes in the direction of the inner jet.Comment: Accepted for Publication in The Astrophysical Journal. 11 pages, 6 figures, 4 tables. High resolution images on figure 1 and complete tables 1 and 2 may be provided on reques

    Unexpected High Brightness Temperature 140 PC from the Core in the Jet of 3C 120

    Full text link
    We present 1.7, 5, 15, 22 and 43 GHz polarimetric multi-epoch VLBA observations of the radio galaxy 3C 120. The higher frequency observations reveal a new component, not visible before April 2007, located 80 mas from the core (which corresponds to a deprojected distance of 140 pc), with a brightness temperature about 600 times higher than expected at such distances. This component (hereafter C80) is observed to remain stationary and to undergo small changes in its brightness temperature during more than two years of observations. A helical shocked jet model - and perhaps some flow acceleration - may explain the unusually high Tb of C80, but it seems unlikely that this corresponds to the usual shock that emerges from the core and travels downstream to the location of C80. It appears that some other intrinsic process in the jet, capable of providing a local burst in particle and/or magnetic field energy, may be responsible for the enhanced brightness temperature observed in C80, its sudden appearance in April 2007, and apparent stationarity.Comment: 5 pages, 5 figures Accepted to be published in ApJ Letter

    The innermost regions of the jet in NRAO 150. Wobbling or internal rotation?

    Full text link
    NRAO 150 is a very bright millimeter to radio quasar at redshift zz=1.52 for which ultra-high-resolution VLBI monitoring has revealed a counter-clockwise jet-position-angle wobbling at an angular speed 11\sim11^{\circ}/yr in the innermost regions of the jet. In this paper we present new total and linearly polarized VLBA images at 43 GHz extending previous studies to cover the evolution of the jet in NRAO 150 between 2006 and early 2009. We propose a new scenario to explain the counter-clockwise rotation of the jet position angle based on a helical motion of the components in a jet viewed faced-on. This alternative scenario is compatible with the interpretation suggested in previous works once the indetermination of the absolute position of the self-calibrated VLBI images is taken into account. Fitting of the jet components motion to a simple internal rotation kinematical model shows that this scenario is a likely alternative explanation for the behavior of the innermost regions in the jet of NRAO 150.Comment: 5 pages, 4 figures, Presented in 'The Innermost Regions of Relativistic Jets and Their Magnetic Fields' conference. Granada, Spain, 201

    3C 286: a bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations

    Full text link
    (Context.) A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. (Aims.) Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. (Methods.) Here we present the 3 and 1 mm monitoring observations obtained between September 2006 and January 2012 with the XPOL polarimeter on the IRAM 30 m Millimeter Telescope. (Results.) Our observations show that 3C 286 is a bright source of constant total flux with 3 mm flux density S_3mm = (0.91 \pm 0.02) Jy. The 3mm linear polarization degree (p_3mm =[13.5\pm0.3]%) and polarization angle (chi_3mm =[37.3\pm0.8]deg.,expressed in the equatorial coordinate system) are also constant during the time span of our observations. Although with poorer time sampling and signal-to-noise ratio, our 1 mm observations of 3C 286 are also reproduced by a constant source of 1 mm flux density (S_1mm = [0.30 \pm 0.03] Jy), polarization fraction (p_1mm = [14.4 \pm 1.8] %), and polarization angle (chi_1mm = [33.1 \pm 5.7]deg.). (Conclusions.) This, together with the previously known compact structure of 3C 286 -extended by ~3.5" in the sky- allow us to propose 3C 286 as a new calibrator for both single dish and interferometric polarization observations at 3 mm, and possibly at shorter wavelengths.Comment: Accepted for publication in A&A. 7 pages, 4 figures, 8 tables. Updated data sets with regard to previous version. New discussion about multi frequency properties of the source. Section 3.3, Figures 3 and 4, and Tables 7 and 8 are ne

    Changes in the trajectory of the radio jet in 0735+178?

    Get PDF
    We present multi-epoch 8.4 and 43 GHz Very Long Baseline Array images of the BL Lac object 0735+178. The images confirm the presence of a twisted jet with two sharp apparent bends of 90^{\circ} within two milliarcseconds of the core, resembling a helix in projection. The observed twisted geometry could be the result of precession of the jet inlet, but is more likely produced by pressure gradients in the external medium through which the jet propagates. Quasi-stationary components are observed at the locations of the 90^{\circ} bends, possibly produced by differential Doppler boosting. Identification of components across epochs, since the earliest VLBI observations of this source in 1979.2, proves difficult due to the sometimes large time gaps between observations. One possible identification suggests the existence of superluminal components following non--ballistic trajectories with velocities up to 11.6±0.6h651c11.6\pm 0.6 h_{65}^{-1} c. However, in images obtained after mid-1995, components show a remarkable tendency to cluster near several jet positions, suggesting a different scenario in which components have remained nearly stationary in time at least since mid-1995. Comparison with the earlier published data, covering more than 19 years of observations, suggests a striking qualitative change in the jet trajectory sometime between mid-1992 and mid-1995, with the twisted jet structure with stationary components becoming apparent only at the later epochs. This would require a re-evaluation of the physical parameters estimated for 0735+178, such as the observing viewing angle, the plasma bulk Lorentz factor, and those deduced from these.Comment: 18 pages, 5 figures, accepted for publication in MNRA

    On the nature of an ejection event in the jet of 3C111

    Full text link
    We present a possible scenario for the ejection of a superluminal component in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI observations at 15 GHz discovered the presence of two jet features on scales smaller than one parsec. The first component evolves downstream, whereas the second one fades out after 1 parsec. We propose the injection of a perturbation of dense material followed by a decrease in the injection rate of material in the jet as a plausible explanation. This scenario is supported by 1D relativistic hydrodynamics and emission simulations. The perturbation is modeled as an increase in the jet density, without modifying the original Lorentz factor in the initial conditions. We show that an increase of the Lorentz factor in the material of the perturbation fails to reproduce the observed evolution of this flare. We are able to estimate the lifetime of the ejection event in 3C111 to be 36\pm7 days.Comment: Accepted for publication in Astronomy & Astrophysics Letter

    The milliarcsecond-scale jet of PKS 0735+178 during quiescence

    Get PDF
    We present polarimetric 5 GHz to 43 GHz VLBI observations of the BL Lacertae object PKS 0735+178, spanning March 1996 to May 2000. Comparison with previous and later observations suggests that the overall kinematic and structural properties of the jet are greatly influenced by its activity. Time intervals of enhanced activity, as reported before 1993 and after 2000 by other studies, are followed by highly superluminal motion along a rectilinear jet. In contrast the less active state in which we performed our observations, shows subluminal or slow superluminal jet features propagating through a twisted jet with two sharp bends of about 90 deg. within the innermost three-milliarcsecond jet structure. Proper motion estimates from the data presented here allow us to constrain the jet viewing angle to values < 9 deg., and the bulk Lorentz factor to be between 2 and 4.Comment: 11 pages, 12 figures. Accepted for publication in A&

    A recollimation shock 80 mas from the core in the jet of the radio galaxy 3C120: Observational evidence and modeling

    Full text link
    We present Very Long Baseline Array observations of the radio galaxy 3C120 at 5, 8, 12, and 15 GHz designed to study a peculiar stationary jet feature (hereafter C80) located ~80 mas from the core, which was previously shown to display a brightness temperature ~600 times lager than expected at such distances. The high sensitivity of the images -- obtained between December 2009 and June 2010 -- has revealed that C80 corresponds to the eastern flux density peak of an arc of emission (hereafter A80), downstream of which extends a large (~20 mas in size) bubble-like structure that resembles an inverted bow shock. The linearly polarized emission closely follows that of the total intensity in A80, with the electric vector position angle distributed nearly perpendicular to the arc-shaped structure. Despite the stationary nature of C80/A80, superluminal components with speeds up to ~3 c have been detected downstream from its position, resembling the behavior observed in the HST-1 emission complex in M87. The total and polarized emission of the C80/A80 structure, its lack of motion, and brightness temperature excess are best reproduced by a model based on synchrotron emission from a conical shock with cone opening angle \eta=10 degrees, jet viewing angle \theta=16 degrees, a completely tangled upstream magnetic field, and upstream Lorentz factor \gamma=8.4. The good agreement between our observations and numerical modeling leads us to conclude that the peculiar feature associated with C80/A80 corresponds to a conical recollimation shock in the jet of 3C120 located at a de-projected distance of ~190 pc downstream from the nucleus.Comment: Accepted for publication in Ap

    La valoración del patrimonio inmaterial en España y Japón. Una breve reflexión comparativa

    Get PDF
    El concepto de patrimonio conlleva intrínsecamente dos valores que lo definen y caracterizan: representatividad identitaria del colectivo con el que se vincula (desde la identidad étnica a las fragmentaciones socioculturales o territoriales que la estructuran) y capacidad de evocación de los tiempos históricos (pasado) o modos de vida (presentes) con los que se relaciona. Por lo tanto, todo patrimonio se define por los valores inmateriales que lo caracterizan, no importa que su manifestación sea permanente (monumento, artefacto,…) o que se active sólo en determinados contextos. Sea como fuere, buena parte de los valores patrimoniales que actualmente más se enfatizan en la cultura occidental significativamente forman parte de las percepciones que han caracterizado la cultura japonesa y, en general, a las culturas “orientales”. Nos vamos a referir a los nuevos discursos patrimonialistas en Occidente, en concreto en España, relacionados con los paisajes culturales y las expresiones relacionadas con el denominado patrimonio inmaterial. Aunque, sin embargo, en nuestras culturas queda aún mucho por decir sobre la percepción y significados que se da los saberes y prácticas relacionadas con la cultura tradicional; un campo en el que Japón ha sido y es pionera, manifiesto en la peculiaridad de los denominados “tesoros nacionales vivientes” (personas portadoras de bienes culturales intangibles importantes).The concept of heritage inherently involves two values that define and characterize it: identity representation of the collective with which it is related to (from ethnic identity to socio-cultural or territorial fragmentations), and capacity to recall historical periods (past) or lifestyles (present). So heritage is defined by the intangibles values that characterize it. It doesn’t matter if its expressions are permanent (monuments, artifacts,…) or they are specifically activated in some contexts. Anyway, a large proportion of the heritage values that are emphasized in occidental culture take part of perceptions which have characterized Japanese culture and other Oriental cultures. We will refer to new patrimonial speeches in Occident, specifically in Spain, which are related to cultural landscapes and expressions of intangible heritage. However, in Western cultures much remains to say about the perception and meaning given to knowledge and practises related to traditional culture. In this area, Japan has been (and is still being) a pioneer country, manifested in the singularity of the called ‘living national treasures’ (people who carry important intangible cultural heritage)

    Faraday rotation and polarization gradients in the jet of 3C~120: Interaction with the external medium and a helical magnetic field?

    Full text link
    We present a sequence of 12 monthly polarimetric 15, 22, and 43 GHz VLBA observations of the radio galaxy 3C 120 revealing a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. The degree of polarization increases with distance from the core and toward the jet edges, and has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. We find a localized region of high Faraday rotation measure superposed on this structure between approximately 3 and 4 mas from the core, with a peak of about 6000 rad/m^2. Interaction of the jet with the external medium or a cloud would explain the confined region of enhanced Faraday rotation, as well as the stratification in degree of polarization and the flaring of superluminal knots when crossing this region. The data are also consistent with a helical field in a two-fluid jet model, consisting of an inner, emitting jet and a sheath containing nonrelativistic electrons. However, this helical magnetic field model cannot by itself explain the localized region of enhanced Faraday rotation. The polarization electric vectors, predominantly perpendicular to the jet axis once corrected for Faraday rotation, require a dominant component parallel to the jet axis (in the frame of the emitting plasma) for the magnetic field in the emitting region.Comment: Accepted for publication in ApJ Letters. 4 pages (including 5 figures
    corecore