73 research outputs found

    The ALICE Transition Radiation Detector: Construction, operation, and performance

    Get PDF
    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection. (c) 2017 CERN for the benefit of the Authors. Published by Elsevier B.V

    Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A

    Full text link

    Simple sequence repeats in : distribution, polymorphism and evolutionary inference-6

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Simple sequence repeats in : distribution, polymorphism and evolutionary inference"</p><p>http://www.biomedcentral.com/1471-2164/9/31</p><p>BMC Genomics 2008;9():31-31.</p><p>Published online 23 Jan 2008</p><p>PMCID:PMC2257937.</p><p></p>hromosome number. Cross number is expressed by a letter; A (N6, FGSC#4825 × FGSC#2223), B (N4, FGSC#4720 × FGSC4715), and C (N2, FGSC#3223 × FGSC#4724). For example, 1-A indicates the linkage group that corresponding chromosome 1 in the cross N2. The corresponding linkage groups from different crosses are alignedbased on the relative positions of anchor markers. The anchor markers are underlined and connected by thin lines among the corresponding linkage groups. The physical location of each marker is indicated by the super-contig number followed by the marker name, e.g. MN018-3 and MN015-3 are two markers that are located in the super-contig 3 [70]. The scale on the left of each linkage group shows a relative map position denoted by centi-morgan (cM)

    Not Available

    No full text
    Not AvailableEnormous sequence information is available in public databases as a result of sequencing of diverse crop genomes. It is important to use this genomic information for the identification and isolation of novel and superior alleles of agronomically important genes from crop gene pools to suitably deploy for the development of improved cultivars. Allele mining is a promising approach to dissect naturally occurring allelic variation at candidate genes controlling key agronomic traits which has potential applications in crop improvement programs. It helps in tracing the evolution of alleles, identification of new haplotypes and development of allele-specific markers for use in marker-assisted selection. Realizing the immense potential of allele mining, concerted allele mining efforts are underway in many international crop research institutes. This review examines the concepts, approaches and applications of allele mining along with the challenges associated while emphasizing the need for more refined ‘mining’ strategies for accelerating the process of allele discovery and its utilization in molecular breeding.Not Availabl
    corecore