850 research outputs found

    Scalable Approach for Power Droop Reduction During Scan-Based Logic BIST

    Get PDF
    The generation of significant power droop (PD) during at-speed test performed by Logic Built-In Self Test (LBIST) is a serious concern for modern ICs. In fact, the PD originated during test may delay signal transitions of the circuit under test (CUT): an effect that may be erroneously recognized as delay faults, with consequent erroneous generation of test fails and increase in yield loss. In this paper, we propose a novel scalable approach to reduce the PD during at-speed test of sequential circuits with scan-based LBIST using the launch-on-capture scheme. This is achieved by reducing the activity factor of the CUT, by proper modification of the test vectors generated by the LBIST of sequential ICs. Our scalable solution allows us to reduce PD to a value similar to that occurring during the CUT in field operation, without increasing the number of test vectors required to achieve a target fault coverage (FC). We present a hardware implementation of our approach that requires limited area overhead. Finally, we show that, compared with recent alternative solutions providing a similar PD reduction, our approach enables a significant reduction of the number of test vectors (by more than 50%), thus the test time, to achieve a target FC

    Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign

    Get PDF
    Water soluble organic compounds (WSOC) in aerosol samples collected in the Amazon Basin in a period encompassing the middle/late dry season and the beginning of the wet season, were investigated by H NMR spectroscopy. HiVol filter samples (PM2.5 and PM>2.5) and size-segregated samples from multistage impactor were subjected to H NMR characterization. The H NMR methodology, recently developed for the analysis of organic aerosol samples, has been improved by exploiting chemical methylation of carboxylic groups with diazomethane, which allows the direct determination of the carboxylic acid content of WSOC. The content of carboxylic carbons for the different periods and sizes ranged from 12% to 20% of total measured carbon depending on the season and aerosol size, with higher contents for the fine particles in the transition and wet periods with respect to the dry period. A comprehensive picture is presented of WSOC functional groups in aerosol samples representative of the biomass burning period, as well as of transition and semi-clean atmospheric conditions. A difference in composition between fine (PM2.5) and coarse (PM>2.5) size fractions emerged from the NMR data, the former showing higher alkylic content, the latter being largely dominated by R-O-H (or R-O-R') functional groups. Very small particles (<0.14 &mu;m), however, present higher alkyl-chain content and less oxygenated carbons than larger fine particles (0.42&ndash;1.2 &mu;m). More limited variations were found between the average compositions in the different periods of the campaign

    Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy

    Get PDF
    International audienceA complete size segregated chemical characterisation was carried out for aerosol samples collected in the urban area of Bologna over a period of one year, using five-stage low pressure Berner impactors. An original dual-substrate technique was adopted to obtain samples suitable for a complete chemical characterisation. Total mass, inorganic, and organic components were analysed as a function of size, and a detailed characterisation of the water soluble organic compounds was also performed by means of a previously developed methodology, based on HPLC separation of organic compounds according to their acid character and functional group analysis by Proton Nuclear Magnetic Resonance. Chemical mass closure of the collected samples was reached to within a few percent on average in the submicron aerosol range, while a higher unknown fraction in the coarse aerosol range was attributed to soil-derived species not analysed in this experiment. Comparison of the functional group analysis results with model results simulating water soluble organic compound production by gas-to-particle conversion of anthropogenic VOCs showed that this pathway provides a minor contribution to the organic composition of the aerosol samples in the urban area of Bologna

    Chemical mass balance of size-segregated atmospheric aerosol in an urban area of the Po Valley, Italy

    No full text
    International audienceA complete size segregated chemical characterisation was carried out for aerosol samples collected in the urban area of Bologna over a period of one year, using five-stage low pressure Berner impactors. An original dual-substrate technique was adopted to obtain samples suitable for a complete chemical characterisation. Total mass, inorganic, and organic components were analysed as a function of size, and a detailed characterisation of the water soluble organic compounds was also performed by means of a previously developed methodology, based on HPLC separation of organic compounds according to their acid character and functional group analysis by Proton Nuclear Magnetic Resonance. Chemical mass closure of the collected samples was reached to within a few percent on average in the submicron aerosol range, while a higher unknown fraction in the coarse aerosol range was attributed to soil-derived species not analysed in this experiment. Comparison of the functional group analysis results with model results simulating water soluble organic compound production by gas-to-particle conversion of anthropogenic VOCs showed that this pathway provides a minor contribution to the organic composition of the aerosol samples in the urban area of Bologna

    Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the QUEST project

    No full text
    International audienceSize-segregated aerosol samples were collected during the QUEST field campaign at Hyytiälä, a boreal forest site in Southern Finland, during spring 2003. Aerosol samples were selectively collected during both particle formation events and periods in which no particle formation occurred. A comprehensive characterisation of the aerosol chemical properties (water-soluble inorganic and organic fraction) and an analysis of the relevant meteorological parameters revealed how aerosol chemistry and meteorology combine to determine a favorable "environment" for new particle formation. The results indicated that all events, typically favored during northerly air mass advection, were background aerosols (total mass concentrations range between 1.97 and 4.31 µg m-3), with an increasingly pronounced marine character as the northerly air flow arrived progressively from the west and, in contrast, with a moderate SO2-pollution influence as the air arrived from more easterly directions. Conversely, the non-event aerosol, transported from the south, exhibited the chemical features of European continental sites, with a marked increase in the concentrations of all major anthropogenic aerosol constituents. The higher non-event mass concentration (total mass concentrations range between 6.88 and 16.30 µg m-3) and, thus, a larger surface area, tended to suppress new particle formation, more efficiently depleting potential gaseous precursors for nucleation. The analysis of water-soluble organic compounds showed that clean nucleation episodes were dominated by aliphatic biogenic species, while non-events were characterised by a large abundance of anthropogenic oxygenated species. Interestingly, a significant content of ?-pinene photo-oxidation products was observed in the events aerosol, accounting for, on average, 72% of their WSOC; while only moderate amounts of these species were found in the non-event aerosol. If the organic vapors condensing onto accumulation mode particles are responsible also for the growth of newly formed thermodynamically stable clusters, our finding allows one to postulate that, at the site, ?-pinene photo-oxidation products (and probably also photo-oxidation products from other terpenes) are the most likely species to contribute to the growth of nanometer-sized particles

    Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC

    Get PDF
    International audiencePhysical and chemical characterizations of the atmospheric aerosol were carried out at Mt. Cimone (Italy) during the 4 June-4 July 2000 period. Particle size distributions in the size range 6nm-10µm were measured with a differential mobility analyzer (DMA) and an optical particle counter (OPC). Size-segregated aerosol was sampled using a 6-stage low pressure impactor. Aerosol samples were submitted to gravimetric and chemical analyses. Ionic, carbonaceous and refractory components of the aerosol were quantified. We compared the sub- and superµm aerosol mass concentrations determined by gravimetric measurements (mGM), chemical analyses (mmCA), and by converting particle size distribution to aerosol mass concentrations (mmSD). Mean random uncertainties associated with the determination of mmGM, mmCA, and mmSD were assessed. The three estimates of the sub-µm aerosol mass concentration agreed, which shows that within experimental uncertainty, the sub-µm aerosol was composed of the quantified components. The three estimates of the super-µm aerosol mass concentration did not agree, which indicates that random uncertainties and/or possible systematic errors in aerosol sampling, sizing or analyses were not adequately accounted for. Aerosol chemical composition in air masses from different origins showed differences, which were significant in regard to experimental uncertainties. During the Saharan dust advection period, coarse dust and fine anthropogenic particles were externally mixed. No anthropogenic sulfate could be found in the super-µm dust particles. In contrast, nitrate was shifted towards the aerosol super-µm fraction in presence of desert dust

    On the representativeness of coastal aerosol studies to open ocean studies: Mace Head – a case study

    Get PDF
    A unique opportunity arose during the MAP project to compare open ocean aerosol measurements with those undertaken at the Mace Head Global Atmosphere Watch Station, a station used for decades for aerosol process research and long-term monitoring. The objective of the present study is to demonstrate that the key aerosol features and processes observed at Mace Head are characteristic of the open ocean, while acknowledging and allowing for spatial and temporal gradients. Measurements were conducted for a 5-week period at Mace Head and offshore, on the Research Vessel Celtic Explorer, in generally similar marine air masses, albeit not in connected-flow scenarios. The results of the study indicate, in terms of aerosol number size distribution, higher nucleation mode particle concentrations at Mace Head than offshore, pointing to a strong coastal source of new particles that is not representative of the open ocean. The Aitken mode exhibited a large degree of similarity, with no systematic differences between Mace Head and the open ocean, while the accumulation mode showed averagely 35% higher concentrations at Mace Head. The higher accumulation mode concentration can be attributed equally to cloud processing and to a coastal enhancement in concentration. Chemical analysis showed similar or even higher offshore concentrations for dominant species, such as nss-SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;-2&lt;/sup&gt;, WSOC, WIOC and MSA. Sea salt concentration differences determined a 40% higher supermicron mass at Mace Head, although this difference can be attributed to a higher wind speed at Mace Head during the comparison period. Moreover, the relative chemical composition as a function of size illustrated remarkable similarity. While differences to varying degrees were observed between offshore and coastal measurements, no convincing evidence was found of local coastal effects, apart from nucleation mode aerosol, thus confirming the integrity of previously reported marine aerosol characterisation studies at Mace Head

    The effect of physical and chemical aerosol properties on warm cloud droplet activation

    Get PDF
    The effects of atmospheric aerosol on climate forcing may be very substantial but are quantified poorly at present; in particular, the effects of aerosols on cloud radiative properties, or the "indirect effects" are credited with the greatest range of uncertainty amongst the known causes of radiative forcing. This manuscript explores the effects that the composition and properties of atmospheric aerosol can have on the activation of droplets in warm clouds, so potentially influencing the magnitude of the indirect effect. The effects of size, composition, mixing state and various derived properties are assessed and a range of these properties provided by atmospheric measurements in a variety of locations is briefly reviewed. The suitability of a range of process-level descriptions to capture these aerosol effects is investigated by assessment of their sensitivities to uncertainties in aerosol properties and by their performance in closure studies. The treatment of these effects within global models is reviewed and suggestions for future investigations are made
    corecore