65 research outputs found

    Antigenic variation in <i>Trypanosoma brucei</i>: joining the DOTs

    Get PDF
    African trypanosomes, such as &lt;i&gt;Trypanosoma brucei&lt;/i&gt;, are protistan parasites that cause sleeping sickness. Though first described more than a century ago, trypanosomes remain a blight on the health of the human population and on the economy of sub-Saharan Africa. &lt;i&gt;T. brucei&lt;/i&gt; replicates in the bloodstream of infected mammals and traverses the blood-brain barrier to enter the central nervous system in the late, frequently fatal, stages of the disease. Because of its extracellular lifestyle, &lt;i&gt;T. brucei&lt;/i&gt; is continuously exposed to antibody challenge. To circumvent this, the parasite uses antigenic variation of a surface protein named the variant surface glycoprotein (VSG). Around 107 VSG molecules are expressed on the parasite's cell surface, creating a dense coat that prevents adaptive immunity from detecting or accessing invariant antigens. However, antibodies against the expressed VSG are generated, and periodic switches to an immunologically distinct VSG coat are necessary for parasite survival. Such switches are pre-emptive of the immune response and contribute to the pattern of trypanosome growth seen in an infected host (Figure 1): parasite numbers increase, but then drop as VSG-specific antibodies are raised by the host. Cells that have switched to another VSG coat survive this killing and seed the outgrowth of a subsequent peak of parasites, which is again decimated by anti-VSG immune killing. As a survival strategy, antigenic variation succeeds by prolonging the time that the parasite

    Determining the Repertoire of Immunodominant Proteins via Whole-Genome Amplification of Intracellular Pathogens

    Get PDF
    Culturing many obligate intracellular bacteria is difficult or impossible. However, these organisms have numerous adaptations allowing for infection persistence and immune system evasion, making them some of the most interesting to study. Recent advancements in genome sequencing, pyrosequencing and Phi29 amplification, have allowed for examination of whole-genome sequences of intracellular bacteria without culture. We have applied both techniques to the model obligate intracellular pathogen Anaplasma marginale and the human pathogen Anaplasma phagocytophilum, in order to examine the ability of phi29 amplification to determine the sequence of genes allowing for immune system evasion and long-term persistence in the host. When compared to traditional pyrosequencing, phi29-mediated genome amplification had similar genome coverage, with no additional gaps in coverage. Additionally, all msp2 functional pseudogenes from two strains of A. marginale were detected and extracted from the phi29-amplified genomes, highlighting its utility in determining the full complement of genes involved in immune evasion

    Diversity of Anaplasma phagocytophilum Strains, USA

    Get PDF
    We analyzed the structure of the expression site encoding the immunoprotective protein MSP2/P44 from multiple Anaplasma phagocytophilum strains in the United States. The sequence of p44ESup1 had diverged in Ap-variant 1 strains infecting ruminants. In contrast, no differences were detected between A. phagocytophilum strains infecting humans and domestic dogs

    Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi

    Get PDF
    A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to ∼6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5′ and 3′ untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system

    Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serovars of the human pathogen <it>Chlamydia trachomatis </it>occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. In contrast, the gene that determines serovar specificity, <it>ompA</it>, has a phylogenetic association that is not congruent with tissue tropism and has a degree of nucleotide variability much higher than other genomic loci. The <it>ompA </it>gene encodes the major surface-exposed antigenic determinant, and the observed nucleotide diversity at the <it>ompA </it>locus is thought to be due to recombination and host immune selection pressure. The possible contribution of a localized increase in mutation rate, however, has not been investigated.</p> <p>Results</p> <p>Nucleotide diversity and phylogenetic relationships of the five constant and four variable domains of the <it>ompA </it>gene, as well as several loci surrounding <it>ompA</it>, were examined for each serovar. The loci flanking the <it>ompA </it>gene demonstrated that nucleotide diversity increased monotonically as <it>ompA </it>is approached and that their gene trees are not congruent with either <it>ompA </it>or tissue tropism. The variable domains of the <it>ompA </it>gene had a very high level of non-synonymous change, which is expected as these regions encode the surface-exposed epitopes and are under positive selection. However, the synonymous changes are clustered in the variable regions compared to the constant domains; if hitchhiking were to account for the increase in synonymous changes, these substitutions should be more evenly distributed across the gene. Recombination also cannot entirely account for this increase as the phylogenetic relationships of the constant and variable domains are congruent with each other.</p> <p>Conclusions</p> <p>The high number of synonymous substitutions observed within the variable domains of <it>ompA </it>appears to be due to an increased mutation rate within this region of the genome, whereas the increase in nucleotide substitution rate and the lack of phylogenetic congruence in the regions flanking <it>ompA </it>are characteristic motifs of gene conversion. Together, the increased mutation rate in the <it>ompA </it>gene, in conjunction with gene conversion and positive selection, results in a high degree of variability that promotes host immune evasion.</p

    Central Role of the Holliday Junction Helicase RuvAB in vlsE Recombination and Infectivity of Borrelia burgdorferi

    Get PDF
    Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA), BB0022 (ruvB), BB0797 (mutS), and BB0098 (mutS-II), showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP) screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid) mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the ‘parental’ vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together these studies provide the first examples of trans-acting factors involved in vlsE recombination

    Transmission of Anaplasma marginale by Boophilus microplus: Retention of Vector Competence in the Absence of Vector-Pathogen Interaction

    No full text
    Whether arthropod vectors retain competence for transmission of infectious agents in the long-term absence of vector-pathogen interaction is unknown. We addressed this question by quantifying the vector competence of two tick vectors, with mutually exclusive tropical- versus temperate-region distributions, for genetically distinct tropical- and temperate-region strains of the cattle pathogen Anaplasma marginale . The tropical cattle tick Boophilus microplus , which has been eradicated from the continental United States for over 60 years, was able to acquire and transmit the temperate St. Maries (Idaho) strain of A. marginale . Similarly, the temperate-region tick Dermacentor andersoni efficiently acquired and transmitted the Puerto Rico strain of A. marginale . There were no significant quantitative differences in infection rate or number of organisms per tick following feeding on cattle with persistent infections of either A. marginale strain. In contrast, the significantly enhanced replication of the Puerto Rico strain in the salivary gland of B. microplus at the time of transmission feeding is consistent with adaptation of a pathogen strain to its available vector. However, the transmission of both strains by B. microplus demonstrates that adaptation or continual interaction between the pathogen and vector is not required for retention of vector competence. Importantly, the results clearly show that reestablishment of acaricide-resistant B. microplus in the United States would be associated with A. marginale transmission

    Antigenic variation and transmission fitness as drivers of bacterial strain structure

    No full text
    Shifts in microbial strain structure underlie both emergence of new pathogens and shifts in patterns of infection and disease of known agents. Understanding the selective pressures at a population level as well as the mechanisms at the molecular level represent significant gaps in our knowledge regarding microbial epidemiology. Highly antigenically variant pathogens, which are broadly represented among microbial taxons, are most commonly viewed through the mechanistic lens of how they evade immune clearance within the host. However, equally important are mechanisms that allow pathogens to evade immunity at the population level. The selective pressure of immunity at both the level of the individual host and the population is a driver of diversification within a pathogen strain. Using Anaplasma marginale as a model highly antigenically variable bacterial pathogen, we review how immunity selects for genetic diversification in alleles encoding outer membrane proteins both within and among strains. Importantly, genomic comparisons among strains isolated from diverse epidemiologic settings elucidates the counterbalancing pressures for diversification and conservation, driven by immune escape and transmission fitness, respectively, and how these shape pathogen strain structure

    Generation of Antigenic Variants via Gene Conversion: Evidence for Recombination Fitness Selection at the Locus Level in Anaplasma marginale

    No full text
    Multiple bacterial and protozoal pathogens utilize gene conversion to generate antigenically variant surface proteins to evade immune clearance and establish persistent infection. Both the donor alleles that encode the variants following recombination into an expression site and the donor loci themselves are under evolutionary selection: the alleles that encode variants that are sufficiently antigenically unique yet retain growth fitness and the loci that allow efficient recombination. We examined allelic usage in generating Anaplasma marginale variants during in vivo infection in the mammalian reservoir host and identified preferential usage of specific alleles in the absence of immune selective pressure, consistent with certain individual alleles having a fitness advantage for in vivo growth. In contrast, the loci themselves appear to have been essentially equally selected for donor function in gene conversion with no significant effect of locus position relative to the expression site or origin of replication. This pattern of preferential allelic usage but lack of locus effect was observed independently for Msp2 and Msp3 variants, both generated by gene conversion. Furthermore, there was no locus effect observed when a single locus contained both msp2 and msp3 alleles in a tail-to-tail orientation flanked by a repeat. These experimental results support the hypothesis that predominance of specific variants reflects in vivo fitness as determined by the encoding allele, independent of locus structure and chromosomal position. Identification of highly fit variants provides targets for vaccines that will prevent the high-level bacteremia associated with acute disease
    corecore