258 research outputs found

    Социально-психологические факторы снижения безопасности дорожного движения в системе взаимодействия Человек-Техника-Среда

    Get PDF
    Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature

    Apparent evolutionary maladaptation and inference from reciprocal transplants

    Get PDF
    In rapidly changing environments populations and species face a challenge to remain adapted and avoid extinction or replacement by fitter types. If evolutionary adaptation cannot keep pace with the speed of environmental change populations will exhibit varying degrees of maladaptation with respect to the current environmental state. Reciprocal transplant experiments are an established method for comparatively assessing the relative fitness of multiple populations in their respective environments. Here we use a quantitative-genetics model to show that inference from reciprocal transplants can be misleading when applied to populations that are in the process of adapting to environmental change. Specifically, we analyze (a) the case of two populations adapting to two different fitness optima starting from a suboptimal initial state and (b) the case of two populations attempting to adapt to changing trait targets that move at different speeds. We find that, in both scenarios, populations can undergo transitional fitness states that, if reciprocal transplant experiments were performed, would lead to the conclusion of (local) non-adaptation or maladaptation. This signature of apparent maladaptation occurs although both populations strictly follow an evolutionary trajectory dictated by the principle of fitness increase over time. Our results have implications for potential patterns of latitudinal replacement of populations/species with ongoing global change and might help shed light on the surprising finding (based on reciprocal transplants) that many populations in the wild fail to show a strong signature of adaptation to their local environments

    Communities that thrive in extreme conditions captured from a freshwater lake

    Get PDF
    Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities.</jats:p

    Recent results of H-mode studies on asdex

    Get PDF
    In a comparative study of various confinement regimes the H-mode demonstrated the best performance. Confinement enhancement factors (above ITER 89-P L-mode scaling) in the range of 1.6 fH 2.8 have been achieved with values depending on the divertor configuration, the wall condition, ELM behaviour and the plasma ion spicies. Long-pulse H-phases, withELMs, of up to 3.5s with constant confinement time, recycling and impurity characteristics are archived. H* -mode operation is possible without a loss of current scaling at qa values as low as 2.2. The B-limit is the same with and without ELMs. Murakami parameters are similar in H-and L-modes

    On the mutual effect of ion temperature gradient instabilities and impurity peaking in the reversed field pinch

    Full text link
    The presence of impurities is considered in gyrokinetic calculations of ion temperature gradient (ITG) instabilities and turbulence in the reversed field pinch device RFX-mod. This device usually exhibits hollow Carbon/Oxygen profiles, peaked in the outer core region. We describe the role of the impurities in ITG mode destabilization, and analyze whether ITG turbulence is compatible with their experimental gradients.Comment: 19 pages, 9 figures, accepted for publication in Plasma Phys. Control. Fusio

    Nanopatterning Gold by Templated Solid State Dewetting on the Silica Warp and Weft of Diatoms

    Get PDF
    The diatom, Nitzschia palea, exhibits complex silica shell (frustule) topography that resembles the warp and weft pattern of woven glass. The surface is perforated with a rhombic lattice of roughly oblong pores between periodically undulating transverse weft costae. Exfoliated frustules can be used to template gold nanoparticles by thermally induced dewetting of thin gold films. Acting as templates for the process, the frustules give rise to two coexisting hierarchies of particle sizes and patterned distributions of nanoparticles. By examining temperature dependent dewetting of 5, 10, and 15 nm Au films for various annealing times, we establish conditions for particle formation and patterning. The 5 nm film gives distributions of small particles randomly distributed over the surface and multiple particles at the rhombic lattice points in the pores. Thicker films yield larger faceted particles on the surface and particles that exhibit shapes that are roughly conformal with the shape of the pore container. The pores and costae are sources of curvature instabilities in the film that lead to mass transport of gold and selective accumulation in the weft valleys and pores. We suggest that, with respect to dewetting, the frustule comprises 2-dimensional sublattices of trapping sites. The pattern of dewetting is radically altered by interposing a self-assembled molecular adhesive of mercaptopropyltrimethoxysilane between the Au film overlayer and the frustule. By adjusting the interfacial energy in this manner, a fractal-like overlay of Au islands coexists with a periodic distribution of nanoparticles in the pores

    Rapid contemporary evolution and clonal food web dynamics

    Full text link
    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans, and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parameterized with data on a well-studied experimental system, and explore how the extent of differences in defense against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary "details" that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.Comment: 30 pages, 6 Figure

    Demasculinization of male guppies increases resistance to a common and harmful ectoparasite

    Get PDF
    Parasites are detrimental to host fitness and therefore should strongly select for host defence mechanisms. Yet, hosts vary considerably in their observed parasite loads. One notable source of inter-individual variation in parasitism is host sex. Such variation could be caused by the immunomodulatory effects of gonadal steroids. Here we assess the influence of gonadal steroids on the ability of guppies (Poecilia reticulata) to defend themselves against a common and deleterious parasite (Gyrodactylus turnbulli). Adult male guppies underwent 31 days of artificial demasculinization with the androgen receptor-antagonist flutamide, or feminization with a combination of flutamide and the synthetic oestrogen 17 β-estradiol, and their parasite loads were compared over time to untreated males and females. Both demasculinized and feminized male guppies had lower G. turnbulli loads than the untreated males and females, but this effect appeared to be mainly the result of demasculinization, with feminization having no additional measurable effect. Furthermore, demasculinized males, feminized males and untreated females all suffered lower Gyrodactylus-induced mortality than untreated males. Together, these results suggest that androgens reduce the ability of guppies to control parasite loads, and modulate resistance to and survival from infection. We discuss the relevance of these findings for understanding constraints on the evolution of resistance in guppies and other vertebrates
    corecore