13 research outputs found

    CK2 phosphorylation-dependent interaction between aprataxin and MDC1 in the DNA damage response

    Get PDF
    Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent interaction. This interaction is mediated via the aprataxin FHA domain and multiple casein kinase 2 di-phosphorylated S-D-T-D motifs in MDC1. X-ray structural and mutagenic analysis of aprataxin FHA domain, combined with modelling of the pSDpTD peptide interaction suggest an unusual FHA binding mechanism mediated by a cluster of basic residues at and around the canonical pT-docking site. Mutation of aprataxin FHA Arg29 prevented its interaction with MDC1 and recruitment to sites of DNA damage. These results indicate that aprataxin is involved not only in single strand break repair but also in the processing of a subset of double strand breaks presumably through its interaction with MDC1

    CK2 phosphorylation-dependent interaction between aprataxin and MDC1 in the DNA damage response

    Get PDF
    Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent interaction. This interaction is mediated via the aprataxin FHA domain and multiple casein kinase 2 di-phosphorylated S-D-T-D motifs in MDC1. X-ray structural and mutagenic analysis of aprataxin FHA domain, combined with modelling of the pSDpTD peptide interaction suggest an unusual FHA binding mechanism mediated by a cluster of basic residues at and around the canonical pT-docking site. Mutation of aprataxin FHA Arg29 prevented its interaction with MDC1 and recruitment to sites of DNA damage. These results indicate that aprataxin is involved not only in single strand break repair but also in the processing of a subset of double strand breaks presumably through its interaction with MDC1

    Differential effects of the ApoE4 genotype on brain structure and function

    No full text
    Item does not contain fulltextThe apolipoprotein E epsilon4 allele is a well established genetic risk factor for sporadic Alzheimer's disease. It is associated with structural and functional brain changes in healthy young, middle-aged and elderly subjects. In the current study, we assessed the impact of the ApoE genotype on brain macro- and microstructure, cognitive functioning and brain activity in fifty healthy young subjects (25 ApoE epsilon4 (epsilon4+) carriers and 25 non-carriers (epsilon4-), mean age 26.4+/-4.6years). We used diffusion tensor imaging (DTI) and voxel based morphometry (VBM) to assess brain structure, an extensive neuropsychological battery to test cognitive functioning and event-related functional magnetic resonance imaging (fMRI) to capture brain activity during episodic memory encoding and retrieval. ApoE epsilon4 carriers differed from non-carriers in fMRI activations but not in cognitive performance nor in brain micro- and macrostructure. These results suggest functional alterations in the episodic memory network that are modulated by the epsilon4 allele and might precede clinical or structural neurodegeneration

    Association of microstructural white matter abnormalities with cognitive dysfunction in geriatric patients with major depression

    No full text
    Item does not contain fulltextMajor depression disorder (MDD) is one of the most common causes of disability in people over 60years of age. Previous studies have linked affective and cognitive symptoms of MDD to white matter (WM) disruption in limbic-cortical circuits. However, the relationship between clinical cognitive deficits and loss of integrity in particular WM tracts is poorly understood. Fractional anisotropy (FA) as a measure of WM integrity was investigated in 17 elderly MDD subjects in comparison with 18 age-matched controls using tract-based spatial statistics (TBSS) and correlated with clinical and cognitive parameters. MDD patients revealed significantly reduced FA in the right posterior cingulate cluster (PCC) compared with controls. FA in the right PCC (but not in the left PCC) showed a significant positive correlation with performance in a verbal naming task, and showed a non-significant trend toward a correlation with verbal fluency and episodic memory performance. In control subjects, no correlations were found between cognitive tasks and FA values either in the right or left PCC. Results provide additional evidence supporting the neuronal disconnection hypothesis in MDD and suggest that cognitive deficits are related to the loss of integrity in WM tracts associated with the disorder

    Physicochemical characterization, toxicity and in vivo biodistribution studies of a discoidal, lipid-based drug delivery vehicle: Lipodisq nanoparticles containing doxorubicin

    No full text
    Many promising pharmaceutically active compounds have low solubility in aqueous environments and their encapsulation into efficient drug delivery vehicles is crucial to increase their bioavailability. Lipodisq nanoparticles are approximately 10 nm in diameter and consist of a circular phospholipid bilayer, stabilized by an annulus of SMA (a hydrolysed copolymer of styrene and maleic anhydride). SMA is used extensively in structural biology to extract and stabilize integral membrane proteins for biophysical studies. Here, we assess the potential of these nanoparticles as drug delivery vehicles, determining their cytotoxicity and the in vivo excretion pathways of their polymer and lipid components. Doxorubicin-loaded Lipodisqs were cytotoxic across a panel of cancer cell lines, whereas nanoparticles without the drug had no effect on cell proliferation. Intracellular doxorubicin release from Lipodisqs in HeLa cells occurred in the low-pH environment of the endolysosomal system, consistent with the breakdown of the discoidal structure as the carboxylate groups of the SMA polymer become protonated. Biodistribution studies in mice showed that, unlike other nanoparticles injected intravenously, most of the Lipodisq components were recovered in the colon, consistent with rapid uptake by hepatocytes and excretion into bile. These data suggest that Lipodisqs have the potential to act as delivery vehicles for drugs and contrast agents

    A Novel Form of Ataxia Oculomotor Apraxia Characterized by Oxidative Stress and Aapoptosis Resistance

    No full text
    Several different autosomal recessive genetic disorders characterized by ataxia with oculomotor apraxia (AOA) have been identified with the unifying feature of defective DNA damage recognition and/or repair. We describe here the characterization of a novel form of AOA showing increased sensitivity to agents that cause single-strand breaks (SSBs) in DNA but having no gross defect in the repair of these breaks. Evidence for the presence of residual SSBs in DNA was provided by dramatically increased levels of poly (ADP-ribose)polymerase (PARP-1) auto-poly (ADP-ribosyl)ation, the detection of increased levels of reactive oxygen/nitrogen species (ROS/RNS) and oxidative damage to DNA in the patient cells. There was also evidence for oxidative damage to proteins and lipids. Although these cells were hypersensitive to DNA damaging agents, the mode of death was not by apoptosis. These cells were also resistant to TRAIL-induced death. Consistent with these observations, failure to observe a decrease in mitochondrial membrane potential, reduced cytochrome c release and defective apoptosis-inducing factor translocation to the nucleus was observed. Apoptosis resistance and PARP-1 hyperactivation were overcome by incubating the patient\u27s cells with antioxidants. These results provide evidence for a novel form of AOA characterized by sensitivity to DNA damaging agents, oxidative stress, PARP-1 hyperactivation but resistance to apoptosis

    Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft

    Get PDF
    The effect of poly(2-ethyl-butyl cyanoacrylate) nanoparticles containing the cytotoxic drug cabazitaxel was studied in three breast cancer cell lines and one basal-like patient-derived xenograft model grown in the mammary fat pad of immunodeficient mice. Nanoparticle-encapsulated cabazitaxel had a much better efficacy than similar concentrations of free drug in the basal-like patient-derived xenograft and resulted in complete remission of 6 out of 8 tumors, whereas free drug gave complete remission only with 2 out of 9 tumors. To investigate the different efficacies obtained with nanoparticle-encapsulated versus free cabazitaxel, mass spectrometry quantification of cabazitaxel was performed in mice plasma and selected tissue samples. Nanoparticle-encapsulated drug had a longer circulation time in blood. There was approximately a three times higher drug concentration in tumor tissue 24 h after injection, and two times higher 96 h after injection of nanoparticles with drug compared to the free drug. The tissue biodistribution obtained after 24 h using mass spectrometry analyses correlates well with biodistribution data obtained using IVIS¼ Spectrum in vivo imaging of nanoparticles labeled with the fluorescent substance NR668, indicating that these data also are representative for the nanoparticle distribution. Furthermore, immunohistochemistry was used to estimate infiltration of macrophages into the tumor tissue following injection of nanoparticle-encapsulated and free cabazitaxel. The higher infiltration of anti-tumorigenic versus pro-tumorigenic macrophages in tumors treated with the nanoparticles might also contribute to the improved effect obtained with the nanoparticle-encapsulated drug. Tumor infiltration of pro-tumorigenic macrophages was four times lower when using nanoparticles containing cabazitaxel than when using particles without drug, and we speculate that the very good therapeutic efficacy obtained with our cabazitaxel-containing particles may be due to their ability to reduce the level of pro-tumorigenic macrophages in the tumor. In summary, encapsulation of cabazitaxel in poly(2-ethyl-butyl cyanoacrylate) nanoparticles seems promising for treatment of breast cancer
    corecore