218 research outputs found

    Restless quiescence: thermonuclear flashes between transient X-ray outbursts

    Get PDF
    For thermonuclear flashes to occur on neutron-star surfaces, fuel must have been accreted from a donor star. However, sometimes flashes are seen from transient binary systems when they are thought to be in their quiescent phase, during which no accretion, or relatively little, is expected to occur. We investigate the accretion luminosity during several such flashes, including the first-ever and brightest detected flash from Cen X-4 in 1969. We infer from observations and theory that immediately prior to these flashes the accretion rate must have been between about 0.001 and 0.01 times the equivalent of the Eddington limit, which is roughly 2 orders of magnitude less than the peak accretion rates seen in these transients during an X-ray outburst and 3-4 orders of magnitude more than the lowest measured values in quiescence. Furthermore, three such flashes, including the one from Cen X-4, occurred within 2 to 7 days followed by an X-ray outburst. A long-term episode of enhanced, but low-level, accretion is predicted near the end of the quiescent phase by the disk-instability model, and may thus have provided the right conditions for these flashes to occur. We discuss the possibility of whether these flashes acted as triggers of the outbursts, signifying a dramatic increase in the accretion rate. Although it is difficult to rule out, we find it unlikely that the irradiance by these flashes is sufficient to change the state of the accretion disk in such a dramatic way.Comment: 9 pages, 3 figures, accepted for publication in A&A; referee comments included plus improved text; results unchange

    Puzzling thermonuclear burst behaviour from the transient low-mass X-ray binary IGR J17473-2721

    Full text link
    We investigate the thermonuclear bursting behaviour of IGR J17473-2721, an X-ray transient that in 2008 underwent a six month long outburst, starting (unusually) with an X-ray burst. We detected a total of 57 thermonuclear bursts throughout the outburst with AGILE, Swift, RXTE, and INTEGRAL. The wide range of inferred accretion rates (between <1% and about 20% of the Eddington accretion rate m-dot_Edd) spanned during the outburst allows us to study changes in the nuclear burning processes and to identify up to seven different phases. The burst rate increased gradually with the accretion rate until it dropped (at a persistent flux corresponding to about 15% of m-dot_Edd) a few days before the outburst peak, after which bursts were not detected for a month. As the persistent emission subsequently decreased, the bursting activity resumed with a much lower rate than during the outburst rise. This hysteresis may arise from the thermal effect of the accretion on the surface nuclear burning processes, and the timescale is roughly consistent with that expected for the neutron star crust thermal response. On the other hand, an undetected superburst, occurring within a data gap near the outburst peak, could have produced a similar quenching of burst activity.Comment: 18 pages, 12 figures, 1 table, accepted for publication in MNRA

    Three-Particle Correlations in Simple Liquids

    Full text link
    We use video microscopy to follow the phase-space trajectory of a two-dimensional colloidal model liquid and calculate three-point correlation functions from the measured particle configurations. Approaching the fluid-solid transition by increasing the strength of the pair-interaction potential, one observes the gradual formation of a crystal-like local order due to triplet correlations, while being still deep inside the fluid phase. Furthermore, we show that in a strongly interacting system the Born-Green equation can be satisfied only with the full triplet correlation function but not with three-body distribution functions obtained from superposing pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and two new paragraphs have been adde

    Dense nuclear matter in a strong magnetic field

    Full text link
    We investigate in a relativistic Hartree theory the gross properties of cold symmetric nuclear matter and nuclear matter in beta equilibrium under the influence of strong magnetic fields. If the field strengths are above the critical values for electrons and protons, the respective phase spaces are strongly modified. This results in additional binding of the systems with distinctively softer equations of state compared to the field free cases. For magnetic field ∟1020\sim 10^{20} Gauss and beyond, the nuclear matter in beta equilibrium practically converts into a stable proton rich matter.Comment: 13 pages, Revtex, figure include

    Triplet correlations in two-dimensional colloidal model liquids

    Full text link
    Three-body distribution functions in classical fluids have been theoretically investigated many times, but have never been measured directly. We present experimental three-point correlation functions that are computed from particle configurations measured by means of video-microscopy in two types of quasi-two-dimensional colloidal model fluids: a system of charged colloidal particles and a system of paramagnetic colloids. In the first system the particles interact via a Yukawa potential, in the second via a potential Γ/r3\Gamma/r^{3}. We find for both systems very similar results: on increasing the coupling between the particles one observes the gradual formation of a crystal-like local order due to triplet correlations, even though the system is still deep inside the fluid phase. These are mainly packing effects as is evident from the close resemblance between the results for the two systems having completely different pair-interaction potentials.Comment: many pages, 8 figures, contribution to the special issue in J.Phys. Cond. Mat. of the CECAM meeting in LYON ''Many-body....'

    Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time.</p> <p>Methods</p> <p>Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis.</p> <p>Results</p> <p>We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed.</p> <p>Conclusions</p> <p>Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.</p

    Discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40

    Full text link
    We report the discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40 during the 100 ks observation performed by BeppoSAX on 1999 August 15-16. Six X-ray bursts have been observed. The unabsorbed 2-10 keV fluxes of the bursts range from ~ (3-9)x10^(-10) erg cm^(-2)s^(-1). A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate Mdot~7x10^(-11) Msun/yr, that may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of 4U 1708-40, where no bursts have been observed; we found persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.Comment: accepted for publication in MNRA

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MW≫B≫me,T,μ,∣p∣M_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong B≫T2B\gg T^{2} and weakly-strong B≳T2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference
    • …
    corecore