6,876 research outputs found

    Transverse and longitudinal vibrations in amorphous silicon

    Full text link
    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q{\bf q}. For this purpose we define the transverse component of the eigenvector with given ω\omega as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.Comment: 6 pages, 3 figure

    Solving the Cooling Flow Problem of Galaxy Clusters by Dark Matter Neutralino Annihilation

    Get PDF
    Recent X-ray observations revealed that strong cooling flow of intracluster gas is not present in galaxy clusters, even though predicted theoretically if there is no additional heating source. I show that relativistic particles produced by dark matter neutralino annihilation in cluster cores provide a sufficient heating source to suppress the cooling flow, under reasonable astrophysical circumstances including adiabatic growth of central density profile, with appropriate particle physics parameters for dark matter neutralinos. In contrast to other astrophysical heat sources such as AGNs, this process is a steady and stable feedback over cosmological time scales after turned on.Comment: 4 pages, no figure. Accepted to Phys. Rev. Lett. A few minor revisions and references adde

    Analysis of ground-based differential imager performance

    Full text link
    In the context of extrasolar planet direct detection, we evaluated the performance of differential imaging with ground-based telescopes. This study was carried out in the framework of the VLT-Planet Finder project and is further extended to the case of Extremely Large Telescopes. Our analysis is providing critical specifications for future instruments mostly in terms of phase aberrations but also regarding alignments of the instrument optics or offset pointing on the coronagraph. It is found that Planet Finder projects on 8m class telescopes can be successful at detecting Extrasolar Giant Planets providing phase aberrations, alignments and pointing are accurately controlled. The situation is more pessimistic for the detection of terrestrial planets with Extremely Large Telescopes for which phase aberrations must be lowered at a very challenging level

    INTEGRAL discovery of non-thermal hard X-ray emission from the Ophiuchus cluster

    Full text link
    We present the results of deep observations of the Ophiuchus cluster of galaxies with INTEGRAL in the 3-80 keV band. We analyse 3 Ms of INTEGRAL data on the Ophiuchus cluster with the IBIS/ISGRI hard X-ray imager and the JEM-X X-ray monitor. In the X-ray band using JEM-X, we show that the source is extended, and that the morphology is compatible with the results found by previous missions. Above 20 keV, we show that the size of the source is slightly larger than the PSF of the instrument, and is consistent with the soft X-ray morphology found with JEM-X and ASCA. Thanks to the constraints on the temperature provided by JEM-X, we show that the spectrum of the cluster is not well fitted by a single-temperature thermal Bremsstrahlung model, and that another spectral component is needed to explain the high energy data. We detect the high energy tail with a higher detection significance (6.4 sigma) than the BeppoSAX claim (2 sigma). Because of the imaging capabilities of JEM-X and ISGRI, we are able to exclude the possibility that the excess emission comes from very hot regions or absorbed AGN, which proves that the excess emission is indeed of non-thermal origin. Using the available radio data together with the non-thermal hard X-ray flux, we estimate a magnetic field B ~ 0.1-0.2 mu G.Comment: 8 pages, 9 figures, accepted by A&

    South-West extension of the hard X-ray emission from the Coma cluster

    Full text link
    We explore the morphology of hard (18-30 keV) X-ray emission from the Coma cluster of galaxies. We analyze a deep (1.1 Ms) observation of the Coma cluster with the ISGRI imager on board the \emph{INTEGRAL} satellite. We show that the source extension in the North-East to South-West (SW) direction (17\sim 17') significantly exceeds the size of the point spread function of ISGRI, and that the centroid of the image of the source in the 18-30 keV band is displaced in the SW direction compared to the centroid in the 1-10 keV band. To test the nature of the SW extension we fit the data assuming different models of source morphology. The best fit is achieved with a diffuse source of elliptical shape, although an acceptable fit can be achieved assuming an additional point source SW of the cluster core. In the case of an elliptical source, the direction of extension of the source coincides with the direction toward the subcluster falling onto the Coma cluster. If the SW excess is due to the presence of a point source with a hard spectrum, we show that there is no obvious X-ray counterpart for this additional source, and that the closest X-ray source is the quasar EXO 1256+281, which is located 6.16.1' from the centroid of the excess. The observed morphology of the hard X-ray emission clarifies the nature of the hard X-ray "excess" emission from the Coma cluster, which is due to the presence of an extended hard X-ray source SW of the cluster core.Comment: 7pages, 10 figure

    Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations

    Get PDF
    We recently reported on the detection of a possible planetary-mass companion to Beta Pictoris at a projected separation of 8 AU from the star, using data taken in November 2003 with NaCo, the adaptive-optics system installed on the Very Large Telescope UT4. Eventhough no second epoch detection was available, there are strong arguments to favor a gravitationally bound companion rather than a background object. If confirmed and located at a physical separation of 8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be the closest planet to its star ever imaged, could be formed via core-accretion, and could explain the main morphological and dynamical properties of the dust disk. Our goal was to return to Beta Pic five years later to obtain a second-epoch observation of the companion or, in case of a non-detection, constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with NaCo in January and February 2009. We also use 4QPM data taken in November 2004. No point-like signal with the brightness of the companion candidate (apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances down to 6.5 AU from the star in the 2009 data. As expected, the non-detection does not allow to rule out a background object; however, we show that it is consistent with the orbital motion of a bound companion that got closer to the star since first observed in 2003 and that is just emerging from behind the star at the present epoch. We place strong constraints on the possible orbits of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy and Astrophysic

    Stretched exponential relaxation in a diffusive lattice model

    Full text link
    We studied the single dimer dynamics in a lattice diffusive model as a function of particle density in the high densification regime. The mean square displacement is found to be subdiffusive both in one and two dimensions. The spatial dependence of the self part of the van Hove correlation function displays as function of rr a single peak and signals a dramatic slow down of the system for high density. The self intermediate scattering function is fitted to the Kohlrausch-Williams-Watts law. The exponent β\beta extracted from the fits is density independent while the relaxation time τ\tau follows a scaling law with an exponent 2.5.Comment: 5 pages, 3 figures, to be published in Phys. Rev.

    Piles of scats for piles of DNA: deriving DNA of lizards from their faeces

    Get PDF
    Author version made available in accordance with the publisher's policySpecies identification and distribution; individual identity and relatedness; population history, structure, and diversity and more can be derived from faecal (scat) DNA. Although there are problems, such as contamination from prey DNA, in deriving donor DNA in this way, non-invasive genetic sampling using scats has a well established role in conservation biology. Using scats from captive and wild Egernia stokesii (Squamata, Scincidae) we evaluated two storage and four DNA extraction methods and assessed the reliability of assessing subsequent genotypes and sequences. Reliable genotypes and sequences were obtained from frozen and dried captive lizard scat DNA extracted using a QIAamp ® DNA Stool Mini Kit and a modified Gentra ®Puregene ® method; yet success rates deteriorated for wild lizard scats. Wild E. stokesii eat more plants than their captive counterparts; DNA extraction may be impeded by plant inhibitors present in scats of wild lizards . Notably, reliable genotypes and sequences were obtained from wild E. stokesii scat DNA extracted using a Qiagen DNeasy ® Plant Mini Kit, a method designed to remove plant inhibitors. Results highlight the opportunity for using scat derived DNA in lizard studies, particularly for species that deposit scats in piles
    corecore