5,542 research outputs found

    INTEGRAL discovery of non-thermal hard X-ray emission from the Ophiuchus cluster

    Full text link
    We present the results of deep observations of the Ophiuchus cluster of galaxies with INTEGRAL in the 3-80 keV band. We analyse 3 Ms of INTEGRAL data on the Ophiuchus cluster with the IBIS/ISGRI hard X-ray imager and the JEM-X X-ray monitor. In the X-ray band using JEM-X, we show that the source is extended, and that the morphology is compatible with the results found by previous missions. Above 20 keV, we show that the size of the source is slightly larger than the PSF of the instrument, and is consistent with the soft X-ray morphology found with JEM-X and ASCA. Thanks to the constraints on the temperature provided by JEM-X, we show that the spectrum of the cluster is not well fitted by a single-temperature thermal Bremsstrahlung model, and that another spectral component is needed to explain the high energy data. We detect the high energy tail with a higher detection significance (6.4 sigma) than the BeppoSAX claim (2 sigma). Because of the imaging capabilities of JEM-X and ISGRI, we are able to exclude the possibility that the excess emission comes from very hot regions or absorbed AGN, which proves that the excess emission is indeed of non-thermal origin. Using the available radio data together with the non-thermal hard X-ray flux, we estimate a magnetic field B ~ 0.1-0.2 mu G.Comment: 8 pages, 9 figures, accepted by A&

    Analysis of ground-based differential imager performance

    Full text link
    In the context of extrasolar planet direct detection, we evaluated the performance of differential imaging with ground-based telescopes. This study was carried out in the framework of the VLT-Planet Finder project and is further extended to the case of Extremely Large Telescopes. Our analysis is providing critical specifications for future instruments mostly in terms of phase aberrations but also regarding alignments of the instrument optics or offset pointing on the coronagraph. It is found that Planet Finder projects on 8m class telescopes can be successful at detecting Extrasolar Giant Planets providing phase aberrations, alignments and pointing are accurately controlled. The situation is more pessimistic for the detection of terrestrial planets with Extremely Large Telescopes for which phase aberrations must be lowered at a very challenging level

    Stretched exponential relaxation in a diffusive lattice model

    Full text link
    We studied the single dimer dynamics in a lattice diffusive model as a function of particle density in the high densification regime. The mean square displacement is found to be subdiffusive both in one and two dimensions. The spatial dependence of the self part of the van Hove correlation function displays as function of rr a single peak and signals a dramatic slow down of the system for high density. The self intermediate scattering function is fitted to the Kohlrausch-Williams-Watts law. The exponent β\beta extracted from the fits is density independent while the relaxation time τ\tau follows a scaling law with an exponent 2.5.Comment: 5 pages, 3 figures, to be published in Phys. Rev.

    An analysis of electron distributions in galaxy clusters by means of the flux ratio of iron lines FeXXV and XXVI

    Full text link
    The interpretation of hard X-ray emission from galaxy clusters is still ambiguous and different models proposed can be probed using various observational methods. Here we explore a new method based on Fe line observations. Spectral line emissivities have usually been calculated for a Maxwellian electron distribution. In this paper a generalized approach to calculate the iron line flux for a modified Maxwellian distribution is considered. We have calculated the flux ratio of iron lines for the various possible populations of electrons that have been proposed to account for measurements of hard X-ray excess emission from the clusters A2199 and Coma. We found that the influence of the suprathermal electron population on the flux ratio is more prominent in low temperature clusters (as Abell 2199) than in high temperature clusters (as Coma).Comment: 6 pages, 3 figures, accepted for publication in A&

    A probable giant planet imaged in the Beta Pictoris disk

    Full text link
    Since the discovery of its dusty disk in 1984, Beta Pictoris has become the prototype of young early-type planetary systems, and there are now various indications that a massive Jovian planet is orbiting the star at ~ 10 AU. However, no planets have been detected around this star so far. Our goal was to investigate the close environment of Beta Pic, searching for planetary companion(s). Deep adaptive-optics L'-band images of Beta Pic were recorded using the NaCo instrument at the Very Large Telescope. A faint point-like signal is detected at a projected distance of ~ 8 AU from the star, within the North-East side of the dust disk. Various tests were made to rule out with a good confidence level possible instrumental or atmospheric artifacts. The probability of a foreground or background contaminant is extremely low, based in addition on the analysis of previous deep Hubble Space Telescope images. The object L'=11.2 apparent magnitude would indicate a typical temperature of ~1500 K and a mass of ~ 8 Jovian masses. If confirmed, it could explain the main morphological and dynamical peculiarities of the Beta Pic system. The present detection is unique among A-stars by the proximity of the resolved planet to its parent star. Its closeness and location inside the Beta Pic disk suggest a formation process by core accretion or disk instabilities rather than a binary-like formation process.Comment: 5 pages, 3 figures, 1 table. A&A Letters, in pres

    Solving the Cooling Flow Problem of Galaxy Clusters by Dark Matter Neutralino Annihilation

    Get PDF
    Recent X-ray observations revealed that strong cooling flow of intracluster gas is not present in galaxy clusters, even though predicted theoretically if there is no additional heating source. I show that relativistic particles produced by dark matter neutralino annihilation in cluster cores provide a sufficient heating source to suppress the cooling flow, under reasonable astrophysical circumstances including adiabatic growth of central density profile, with appropriate particle physics parameters for dark matter neutralinos. In contrast to other astrophysical heat sources such as AGNs, this process is a steady and stable feedback over cosmological time scales after turned on.Comment: 4 pages, no figure. Accepted to Phys. Rev. Lett. A few minor revisions and references adde
    corecore