6,876 research outputs found
Transverse and longitudinal vibrations in amorphous silicon
We show that harmonic vibrations in amorphous silicon can be decomposed to
transverse and longitudinal components in all frequency range even in the
absence of the well defined wave vector . For this purpose we define
the transverse component of the eigenvector with given as a component,
which does not change the volumes of Voronoi cells around atoms. The
longitudinal component is the remaining orthogonal component. We have found the
longitudinal and transverse components of the vibrational density of states for
numerical model of amorphous silicon. The vibrations are mostly transverse
below 7 THz and above 15 THz. In the frequency interval in between the
vibrations have a longitudinal nature. Just this sudden transformation of
vibrations at 7 THz from almost transverse to almost longitudinal ones explains
the prominent peak in the diffusivity of the amorphous silicon just above 7
THz.Comment: 6 pages, 3 figure
Solving the Cooling Flow Problem of Galaxy Clusters by Dark Matter Neutralino Annihilation
Recent X-ray observations revealed that strong cooling flow of intracluster
gas is not present in galaxy clusters, even though predicted theoretically if
there is no additional heating source. I show that relativistic particles
produced by dark matter neutralino annihilation in cluster cores provide a
sufficient heating source to suppress the cooling flow, under reasonable
astrophysical circumstances including adiabatic growth of central density
profile, with appropriate particle physics parameters for dark matter
neutralinos. In contrast to other astrophysical heat sources such as AGNs, this
process is a steady and stable feedback over cosmological time scales after
turned on.Comment: 4 pages, no figure. Accepted to Phys. Rev. Lett. A few minor
revisions and references adde
Analysis of ground-based differential imager performance
In the context of extrasolar planet direct detection, we evaluated the
performance of differential imaging with ground-based telescopes. This study
was carried out in the framework of the VLT-Planet Finder project and is
further extended to the case of Extremely Large Telescopes. Our analysis is
providing critical specifications for future instruments mostly in terms of
phase aberrations but also regarding alignments of the instrument optics or
offset pointing on the coronagraph. It is found that Planet Finder projects on
8m class telescopes can be successful at detecting Extrasolar Giant Planets
providing phase aberrations, alignments and pointing are accurately controlled.
The situation is more pessimistic for the detection of terrestrial planets with
Extremely Large Telescopes for which phase aberrations must be lowered at a
very challenging level
INTEGRAL discovery of non-thermal hard X-ray emission from the Ophiuchus cluster
We present the results of deep observations of the Ophiuchus cluster of
galaxies with INTEGRAL in the 3-80 keV band. We analyse 3 Ms of INTEGRAL data
on the Ophiuchus cluster with the IBIS/ISGRI hard X-ray imager and the JEM-X
X-ray monitor. In the X-ray band using JEM-X, we show that the source is
extended, and that the morphology is compatible with the results found by
previous missions. Above 20 keV, we show that the size of the source is
slightly larger than the PSF of the instrument, and is consistent with the soft
X-ray morphology found with JEM-X and ASCA. Thanks to the constraints on the
temperature provided by JEM-X, we show that the spectrum of the cluster is not
well fitted by a single-temperature thermal Bremsstrahlung model, and that
another spectral component is needed to explain the high energy data. We detect
the high energy tail with a higher detection significance (6.4 sigma) than the
BeppoSAX claim (2 sigma). Because of the imaging capabilities of JEM-X and
ISGRI, we are able to exclude the possibility that the excess emission comes
from very hot regions or absorbed AGN, which proves that the excess emission is
indeed of non-thermal origin. Using the available radio data together with the
non-thermal hard X-ray flux, we estimate a magnetic field B ~ 0.1-0.2 mu G.Comment: 8 pages, 9 figures, accepted by A&
South-West extension of the hard X-ray emission from the Coma cluster
We explore the morphology of hard (18-30 keV) X-ray emission from the Coma
cluster of galaxies. We analyze a deep (1.1 Ms) observation of the Coma cluster
with the ISGRI imager on board the \emph{INTEGRAL} satellite. We show that the
source extension in the North-East to South-West (SW) direction ()
significantly exceeds the size of the point spread function of ISGRI, and that
the centroid of the image of the source in the 18-30 keV band is displaced in
the SW direction compared to the centroid in the 1-10 keV band. To test the
nature of the SW extension we fit the data assuming different models of source
morphology. The best fit is achieved with a diffuse source of elliptical shape,
although an acceptable fit can be achieved assuming an additional point source
SW of the cluster core. In the case of an elliptical source, the direction of
extension of the source coincides with the direction toward the subcluster
falling onto the Coma cluster. If the SW excess is due to the presence of a
point source with a hard spectrum, we show that there is no obvious X-ray
counterpart for this additional source, and that the closest X-ray source is
the quasar EXO 1256+281, which is located from the centroid of the
excess. The observed morphology of the hard X-ray emission clarifies the nature
of the hard X-ray "excess" emission from the Coma cluster, which is due to the
presence of an extended hard X-ray source SW of the cluster core.Comment: 7pages, 10 figure
Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations
We recently reported on the detection of a possible planetary-mass companion
to Beta Pictoris at a projected separation of 8 AU from the star, using data
taken in November 2003 with NaCo, the adaptive-optics system installed on the
Very Large Telescope UT4. Eventhough no second epoch detection was available,
there are strong arguments to favor a gravitationally bound companion rather
than a background object. If confirmed and located at a physical separation of
8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be
the closest planet to its star ever imaged, could be formed via core-accretion,
and could explain the main morphological and dynamical properties of the dust
disk. Our goal was to return to Beta Pic five years later to obtain a
second-epoch observation of the companion or, in case of a non-detection,
constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and
Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with
NaCo in January and February 2009. We also use 4QPM data taken in November
2004. No point-like signal with the brightness of the companion candidate
(apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances
down to 6.5 AU from the star in the 2009 data. As expected, the non-detection
does not allow to rule out a background object; however, we show that it is
consistent with the orbital motion of a bound companion that got closer to the
star since first observed in 2003 and that is just emerging from behind the
star at the present epoch. We place strong constraints on the possible orbits
of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy
and Astrophysic
Stretched exponential relaxation in a diffusive lattice model
We studied the single dimer dynamics in a lattice diffusive model as a
function of particle density in the high densification regime. The mean square
displacement is found to be subdiffusive both in one and two dimensions. The
spatial dependence of the self part of the van Hove correlation function
displays as function of a single peak and signals a dramatic slow down of
the system for high density. The self intermediate scattering function is
fitted to the Kohlrausch-Williams-Watts law. The exponent extracted
from the fits is density independent while the relaxation time follows a
scaling law with an exponent 2.5.Comment: 5 pages, 3 figures, to be published in Phys. Rev.
Piles of scats for piles of DNA: deriving DNA of lizards from their faeces
Author version made available in accordance with the publisher's policySpecies identification and distribution; individual identity and relatedness; population history, structure, and diversity and more can be derived from faecal (scat) DNA. Although there are problems, such as contamination from prey DNA, in deriving donor DNA in this way, non-invasive genetic sampling using scats has a well established role in conservation biology. Using scats from captive and wild Egernia stokesii (Squamata, Scincidae) we evaluated two storage and four DNA extraction methods and assessed the reliability of assessing subsequent genotypes and sequences. Reliable genotypes and sequences were obtained from frozen and dried captive lizard scat DNA extracted using a QIAamp ® DNA Stool Mini Kit and a modified Gentra ®Puregene ® method; yet success rates deteriorated for wild lizard scats. Wild E. stokesii eat more plants than their captive counterparts; DNA extraction may be impeded by plant inhibitors present in scats of wild lizards . Notably, reliable genotypes and sequences were obtained from wild E. stokesii scat DNA extracted using a Qiagen DNeasy ® Plant Mini Kit, a method designed to remove plant inhibitors. Results highlight the opportunity for using scat derived DNA in lizard studies, particularly for species that deposit scats in piles
- …
