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Short summary 8 

Non-invasive genetic sampling using scats has a well established role in conservation 9 

biology; yet is rarely applied to lizard scats. We evaluated various storage and DNA 10 

extraction methods and identified a reliable method of deriving genotypes and sequences 11 

from gidgee skink scats. Results highlight the opportunity for using scat derived DNA in 12 

lizard studies, particularly for species that deposit scats in piles. 13 

Running header A method for deriving lizard DNA from their faeces 14 

15 
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Abstract 16 

Species identification and distribution; individual identity and relatedness; population history, 17 

structure, and diversity and more can be derived from faecal (scat) DNA. Although there are 18 

problems, such as contamination from prey DNA,  in deriving donor DNA in this way, non-19 

invasive genetic sampling using scats has a well established role in conservation biology. 20 

Using scats from captive and wild Egernia stokesii (Squamata, Scincidae) we evaluated two 21 

storage and four DNA extraction methods and assessed the reliability of assessing subsequent 22 

genotypes and sequences. Reliable genotypes and sequences were obtained from frozen and 23 

dried captive lizard scat DNA extracted using a QIAamp ® DNA Stool Mini Kit and a 24 

modified Gentra ®Puregene ® method; yet success rates deteriorated for wild lizard scats. 25 

Wild E. stokesii  eat more plants than their captive counterparts; DNA extraction may be 26 

impeded by plant inhibitors present in scats of wild lizards  . Notably, reliable genotypes and 27 

sequences were obtained from wild E. stokesii scat DNA extracted using a Qiagen DNeasy ® 28 

Plant Mini Kit, a method designed to remove plant inhibitors. Results highlight the 29 

opportunity for using scat derived DNA in lizard studies, particularly for species that deposit 30 

scats in piles. 31 

32 

33 
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Introduction 34 

Faecal pellets (scats) are a widely used source of non-invasive genetic sampling of animals 35 

(Beja-Pereira, Oliveira et al. 2009; Taberlet, Waits et al. 1999) providing information on 36 

species identification and distribution (Harris, Winnie et al. 2010), individual identity 37 

(Brinkman, Person et al. 2010), and relatedness between individuals within a population 38 

(Stenglein, Waits et al. 2011). At the population level, genetic data derived from scats have 39 

shed light on population history, structure, and genetic diversity (Frantz, Pope et al. 2003; 40 

Iyengar, Babu et al. 2005). Scat collection is less intrusive than most traditional methods used 41 

to extract DNA from collected tissue. It causes less stress and less disruption of normal 42 

behaviour to the study individuals (Taberlet and Luikart 1999), and may be less demanding in 43 

terms of field time, collection effort, equipment and costs (Solberg, Bellemain et al. 2006; 44 

Vynne, Baker et al. 2012). For secretive species that are hard to locate or catch, non-invasive 45 

genetic sampling using scats may be the only viable option (e.g. Alacs, Alpers et al. 2003). 46 

For threatened species, the use of scats can provide a means to overcome collecting permit 47 

restrictions. 48 

However, there are specific problems in deriving donor DNA from scats. Scats usually 49 

contain some cells shed from the intestinal lining that will include DNA of the scatting 50 

individual. Scats also contain many other components including exotic DNA from food 51 

remains and gut parasites (Broquet, Menard et al. 2007; Marrero, Fregel et al. 2009; Morin, 52 

Chambers et al. 2001). Extraction and amplification of the DNA of the scatting individual 53 

may be inhibited by this accompanying material (Marrero, Fregel et al. 2009; Panasci, 54 

Ballard et al. 2011). Additionally, sample age and environmental conditions since the time of 55 

scat deposit can result in DNA degradation (Murphy, Kendall et al. 2007; Panasci, Ballard et 56 

al. 2011; Piggot 2004). Despite the challenges posed by the low quantity and quality of DNA, 57 

the use of scats for genetic data now has a well established place in ecological studies. 58 
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In studies of lizards, scats are widely used to derive non-genetic data on diet (Barrows 2006; 59 

Germano, Smith et al. 2007; Pavey, Burwell et al. 2010), species distribution and abundance 60 

(Turner and Medica 1982), recognition and communication (Bull, Griffith et al. 1999; 61 

Wilgers and Horne 2009), parasite infections (Fenner and Bull 2008; Smith, Fenner et al. 62 

2009), and territoriality (Wilgers and Horne 2009). However, despite its wide application in 63 

studies of mammals, the use of scat as a DNA source in reptiles is limited to only a single 64 

published study in snakes (Jones, Cable et al. 2008) with none in lizards. One explanation 65 

may be that lizard scats may contain fewer cells from the scatting individual and lower DNA 66 

yields than mammal scats. In mammal scats, donor DNA is found in a mucous layer of 67 

colorectal epithelial cells that have collected on the surface of the scat as it moves through the 68 

digestive tract (Ball, Pither et al. 2007; Herbert, Darden et al. 2011; Waits and Paetkau 2005). 69 

Amplification of target DNA is more successful using the outer coating of scats than material 70 

from inside the scats (Wehausen, Ramey II et al. 2004), and the scat coating is regularly 71 

targeted for DNA extraction in mammal studies (Ball, Pither et al. 2007; Herbert, Darden et 72 

al. 2011; Piggot and Taylor 2003). Lizard scats appear to have a reduced mucosal coating. 73 

Despite the potential challenges, the scarcity of studies using DNA derived from lizard scats 74 

highlights an opportunity to develop this non-invasive genetic sampling method for this 75 

animal group. An important component of this process is to determine the best method for 76 

storing scat samples, and for extraction to maximise the yield of usable DNA from them. 77 

Published studies in which DNA has been extracted from scats reveal a range of methods for 78 

scat storage. These include freezing (Nagy 2010), drying (Nsubuga, Robbins et al. 2004), and 79 

storage in a buffer (Frantz, Pope et al. 2003). Methods to extract DNA from scats also vary. 80 

For example there are off-the-shelf scat DNA extraction kits (Steinglein, Waits et al. 2011; 81 

Watts, Scribner et al. 2011), or scats can be treated using blood or tissue DNA extraction kits 82 

(Brinkman, Person et al. 2010; Harris, Winnie et al. 2010). It appears that no one method of 83 
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both storage and extraction suits all species, and Valiere, Bonenfant et al. (2007) and Renan, 84 

Speyer et al. (2012) recommended a pilot study be undertaken to identify optimal methods 85 

for a given study species. We investigated alternative methods for storing scats and deriving 86 

DNA from them for an Australian scincid lizard, Egernia stokesii. Our objectives were to: 1) 87 

identify optimal E. stokesii scat storage and DNA extraction methods; and 2) assess the 88 

reliability of DNA genotypes and sequences derived from E. stokesii scats using these 89 

methods. Once developed, these methods could complement traditional invasive sampling 90 

methods in this and other lizard species with the potential to increase sample size with little 91 

extra effort for several lizard species. 92 

Materials and methods 93 

Study species 94 

Egernia stokesii (gidgee skink, J.E. Gray, 1845) is a large (180mm snout-vent length, Cogger 95 

(1983)), long-living, viviparous skink (Duffield and Bull 2002) widely distributed across 96 

eastern and central areas of semi-arid Australia. Egernia stokesii individuals live in stable 97 

family groups (Duffield and Bull 2002; Gardner, Bull et al. 2001a); have high levels of 98 

genetic monogamy (Gardner, Bull et al. 2002) and limited dispersal (Gardner, Bull et al. 99 

2001b). They produce scats upon rock platforms immediately outside of the rocky crevices in 100 

which they reside, resulting in distinctive scat piles or deposits (Duffield and Bull 1998). 101 

Using olfaction, individuals can discriminate between scats from familiar group and non-102 

group members, suggesting scat piles play an important role in social group cohesion in this 103 

species (Bull, Griffith et al. 1999). The use of scat derived DNA in this and similarly scat 104 

piling lizard species could provide quick access to the DNA of most group members, without 105 

the time and effort required to capture the lizards for tissue samples. Additionally, collecting 106 

scat may provide a more complete genetic sampling of social groups as some individuals may 107 

not be caught. 108 
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Scat sampling 109 

Scats were sampled from two sources. First we used captive E. stokesii housed at the Flinders 110 

University of South Australia. These included individuals originally captured near Hawker 111 

(31°54′S; 138°25′E) in the southern Flinders Ranges, South Australia, during the summers of 112 

1993-1998 and their progeny (Arida and Bull 2008; Lanham and Bull 2004; Main and Bull 113 

1996). We randomly selected nine E. stokesii individuals and kept them in nine separate 114 

cages so scats could be confidently assigned to an individual. Each individual was housed in 115 

a cage (40cm high x 40cm wide x 50cm deep) in a room with a temperature of 25ºC (± 2ºC), 116 

with ceiling lights on for 12 hours a day, and heat lamps on for 6 hours a day. Scats were 117 

collected twice weekly for four weeks (total 128 scats, average 14.22 scats per lizard, SE ± 118 

2.13). Second, scats were collected within an estimated four hours of defecation during field 119 

surveys of three E. stokesii populations near Hawker conducted between September 2012 and 120 

March 2013 (409 scats). Scat freshness was assessed based on colour, moisture, compaction, 121 

by the presence of a uric acid spot, and by comparison with scats of known age from the 122 

captive colony. In addition, some lizards captured during surveys defecated during handling, 123 

ensuring complete freshness of the scat samples. 124 

In each case, scats were collected using forceps that had been cleaned in 90% ethanol 125 

between each collection, and were stored using alternative methods as described below. The 126 

diet of captive and wild E. stokesii differed. Captives of all ages were fed a mix of boiled 127 

eggs, fruits and vegetables, and reptile supplement, while adult wild E. stokesii feed largely 128 

on plant material (Duffield and Bull 1998). Based on their size, we deduced that the wild 129 

scats used in this study were from adult E. stokesii (Duffield and Bull 1998); this was 130 

confirmed by visual inspection which showed a largely plant derived content of wild scats. 131 

Positive controls 132 
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To confirm that DNA derived from scats accurately represented the DNA of the scatting 133 

individual we collected blood samples from some individuals as an alternative source for 134 

DNA characterisation. Blood (up to 0.5 mL) was taken from the caudal vein of the nine 135 

isolated captive individuals and from 29 wild individuals that produced a scat while captured. 136 

Blood was stored on Whatman FTA ® Elute for later DNA extraction. We used established 137 

methods for deriving mitochondrial DNA (mtDNA) sequences and microsatellite DNA 138 

genotypes from FTA stored E. stokesii blood (Gardner, Bull et al. 2007). 139 

Scat storage  140 

We compared two methods of storage for the captive lizard scats. Scats were either frozen at 141 

-20°C (Frantz, Pope et al. 2003) (27 scats; all from the lab colony), or dried (72 scats; 54 lab 142 

colony, 18 field). Scats to be dried were sprayed with 90% ethanol and then stored on silica 143 

beads (hereafter termed dried; modified from Roeder, Archer et al. 2004) and kept at room 144 

temperature until DNA extraction. Samples from the field were all stored dried as this 145 

method was considered more practical for sampling in extreme conditions and away from 146 

amenities. 147 

DNA extraction captive lizards 148 

We trialled six DNA extraction methods using 81 scats (27 frozen, 54 dried) from captive 149 

lizards (Table 1): 1) QIAamp ® DNA Stool Mini Kit (QIAGEN ®, Catalogue 51504); 2) 150 

ISOLATE Fecal DNA Kit (Bioline ®, Catalogue BIO-52037); 3) a standard Chelex ® 100 151 

extraction; 4) Chelex ® 100 without boiling (adopted from Casquet, Thebaud et al. 2011); 5) 152 

a modified Gentra ®Puregene ® (Gentra Systems) method; and 6) a direct PCR method. The 153 

first two methods were off the shelf kits specifically derived for scat samples. The next three 154 

were standard kit methods used for tissue or blood samples. The last method involved 155 

amplification without first extracting or purifying the DNA and allows for maximum 156 
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recovery of sample, but can suffer from inhibitors that are normally removed during 157 

extraction. The two kits (QIAamp and ISOLATE) were used according to manufacturer 158 

guidelines. The modified Gentra ® Puregene ® method involved immersion of the whole scat 159 

in SLP buffer (500mM Tris-HCl pH 8.0, 50mM EDTA, 10mM NaCl, (modified from Deuter, 160 

Pietsch et al. 1995) followed by agitation on a rotor wheel for one hour, protein precipitation 161 

with Proteinase K, DNA precipitation with ammonium acetate and isopropanol, ethanol 162 

wash, and DNA hydration in TLE buffer.  163 

For the kit extractions, scats were selected based on recommended weight ranges where 164 

possible; E. stokesii scats ranged in weight from about 10 – 900mg (average 199.60mg, SE ± 165 

16.63), therefore total weight may have been outside the recommended range (180 – 220mg 166 

QIAamp ® DNA Stool Mini Kit, up to 150mg ISOLATE Fecal DNA Kit). Where a scat was 167 

large enough, a surface scrape of the scat was used in kit extractions as this is where most of 168 

the donor individual’s DNA is expected to be found. Alternatively a segment of the scat, or 169 

the entire scat was used, depending upon the protocol. In all methods, filtered pipette tips 170 

were used to minimise contamination and negative extraction controls (scat material was not 171 

added to the extraction) were used to assess contamination. Separate laboratories were used 172 

for extraction, amplification preparation and reaction. Replicate scat extractions are 173 

sometimes recommended (Taberlet, Waits et al. 1999) but this was not possible as a single 174 

extraction often required the whole scat to be used. 175 

DNA amplification captive lizards  176 

Initially, mtDNA was targeted in DNA amplification trials because cells contain more 177 

mtDNA than nuclear DNA (nuDNA), suggesting that if mtDNA could not be amplified then 178 

targeting nuDNA was likely to be futile (Taberlet, Waits et al. 1999). However, amplification 179 

success may be increased for smaller DNA markers (Broquet, Menard et al. 2007). Because 180 

only larger mtDNA genetic markers (~800bp) were currently available for E. stokesii, and 181 
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because scat DNA may be of low quantity and quality (Navidi, Arnheim et al. 1992; Taberlet, 182 

Griffin et al. 1996), we developed genetic markers to amplify ~200 bp of the mtDNA ND4 183 

gene. Three primer pairs were designed in Geneious 5.6 (Biomatters Ltd 2012) based on a 184 

consensus sequence derived from 159 existing E. stokesii mtDNA sequences. These primer 185 

pairs were trialled in DNA derived from E. stokesii blood; forward primer M1544 (5’-186 

TATGAACGCACCCATAGCCG-3’) and reverse primer M1545 (5’-187 

GCTGCTGTTAGAAGAGTGCC-3’) were selected for this study. 188 

For mtDNA only 1:5 and 1:50 dilutions were trialled. A dilution of 1:5 has previously been 189 

successful for DNA from blood in this species, but we considered that overcoming inhibitors 190 

in scat DNA may require increased dilution (Arandjelovic, Guschanski et al. 2009; Ball, 191 

Pither et al. 2007; Monteiro, Bonnemaison et al. 1997). DNA amplifications via polymerase 192 

chain reaction (PCR) were conducted at a total volume of 25 µl consisting of 1 x PCR Gold 193 

Buffer (Applied Biosystems), 0.20 μM of each primer, 0.80 mM dNTPs, 2 mM MgCl2, 0.5 U 194 

AmpliTaq ® Gold DNA polymerase (Applied Biosystems), 2µl of extracted DNA, and PCR 195 

grade water. The cycling conditions were nine minutes at 95 ºC, 34 cycles of 45 seconds at 94 196 

ºC, 45 seconds at 60 ºC, one minute at 72 ºC, and a final elongation step of ten minutes at 72 197 

ºC followed by 30 seconds at 25 ºC. To ensure that non-amplification was due to the test 198 

procedure rather than a failure of the PCR, and that positive results were not the result of 199 

contamination, one PCR positive (DNA extracted from blood and known to amplify) and two 200 

PCR negative (TLE buffer and the negative DNA extraction) controls were used in each 201 

PCR. Neat DNA from which mtDNA PCR reactions were successful was quantified using 202 

Qubit ® 2.0 Fluorometer (Life Technologies Corporation, CA); although we acknowledge 203 

that the DNA measured may have included both target and non-target DNA. 204 

Where mtDNA amplification was successful, as determined by the presence of a band on an 205 

agarose gel, amplification trials continued using a previously developed species specific 206 
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microsatellite genetic marker (Est 1, Gardner, Cooper et al. 1999). For nuDNA, a QIAGEN 207 

® Multiplex PCR Kit (QIAGEN ®, Catalogue 206143) was used. Each 10μl uniplex reaction 208 

mix contained 0.10 x QIAGEN Multiplex PCR Master Mix, 0.25 μM of each primer, 0.50 x 209 

Q-solution, 2μl of extracted DNA, and RNAse Free Water. The cycling conditions were 15 210 

minutes at 95 ºC, 35 cycles of 30 seconds at 94 ºC, 90 seconds at 57 ºC, one minute at 72 ºC, 211 

and a final elongation step of 30 minutes at 60 ºC followed by 30 seconds at 25 ºC. 212 

Amplification success of the Est 1 locus was determined by the presence of a band on an 213 

agarose gel. A dilution of 1:50 has previously been successful for nuDNA from blood in this 214 

species. Because increased dilutions may be required to reduce the effect of inhibitors, if 215 

amplification was not successful for 1:50 dilutions, a range of DNA dilutions (neat, 1:5, 1:10, 216 

1:100, 1:500, 1:1000) were then trialled. If Est 1 failed to amplify for any dilution, the 217 

extraction method was deemed unsuccessful for nuDNA.  218 

DNA extraction and amplification in scats from wild lizards 219 

Although both the QIAamp ® DNA Stool Mini Kit and modified Gentra ®Puregene ® 220 

method were successful in preliminary trials using captive lizard scats (see results), the 221 

modified Gentra ®Puregene ® method had a lower per sample cost, therefore we chose that 222 

method for validation using six wild scats; positive and negative controls were used as 223 

described for captive scats above. None of the six wild scat DNA extractions amplified for 224 

mtDNA (results not shown). We considered diet differences between captive and wild E. 225 

stokesii may explain differences in amplification success rates. Earlier studies have suggested 226 

that diet derived inhibitors in scats may reduce both DNA extraction yields and amplification 227 

success (Herbert, Darden et al. 2011; Kohn and Wayne 1997; Monroe, Grier et al. 2013; 228 

Panasci, Ballard et al. 2011). This could be particularly relevant for omnivorous or 229 

herbivorous lizards due to the presence of polysaccharides and polyphenols found in plants 230 

(Marrero, Fregel et al. 2009; Panasci, Ballard et al. 2011). 231 



11 
 

To investigate the possible presence of PCR inhibitors, DNA was extracted (using the 232 

modified Gentra ®Puregene ® method) from a further six wild scats. To test for PCR 233 

inhibition, one of the wild scat extractions was replicated in the PCR, once with only DNA 234 

extracted from the scat, and once with the scat DNA plus 2μl of a positive control. We could 235 

infer inhibitors were preventing amplification if the positive control on its own amplified but 236 

not in the reaction with scat DNA. In an effort to reduce the impact of potential inhibitors, a 237 

subset of extracted DNA from each of the six wild scats was purified using Microcon 238 

Ultracel YM-100 filters. Purified extractions were then assessed for mtDNA amplification 239 

success using the reaction mix and conditions outlined above; one sample was replicated in 240 

this PCR, one of which was spiked with the positive control to directly assess the effect of the 241 

inhibitor clean-up process (i.e. the same sample was used as in the earlier PCR). 242 

Given the low success rates of the modified Gentra ®Puregene ® method on wild originated 243 

scat (see results), and the additional cost and effort associated with clean-up, a Qiagen 244 

DNeasy ® Plant Mini Kit was trialled for removing inhibitors. DNA was extracted from a 245 

further six wild scats according to the manufacturer instructions except initial scat sample 246 

disruption and homogenisation was avoided. Instead, the scat was left intact and, where 247 

required due to the size of the scat, additional Buffer AP1 and RNAase A stock solution (100 248 

mg/ml) were used to ensure scats were fully immersed prior to incubation. 249 

Validation via genotyping and sequencing 250 

For captive samples, where an extraction method was successful, both scat and blood samples 251 

from a subset of two lizards were sequenced for the mtDNA and genotyped for seven 252 

previously described microsatellite loci (Est 1, Est 4, Est 8, Est 13, (Gardner, Cooper et al. 253 

1999); TrL 28, TrL 29, TrL 35, (Gardner, Sanchez et al. 2008)) in PCR reactions according 254 

to the reaction mix and conditions described above except that reactions were performed in 255 

two multiplex reactions rather than uniplex (multiplex 1: Est 1, Est 4, Est 8, Est 13; multiplex 256 
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2: TrL 28, TrL 29, TrL 35). For wild samples, scat DNA of six lizards that scatted during 257 

handling was extracted using the Qiagen DNeasy ® Plant Mini Kit, and blood DNA from the 258 

same lizards, extracted using the Whatman FTA ® Elute, were similarly genotyped and 259 

sequenced. Prior to sequencing, mtDNA PCR products were purified using multiscreen PCR 260 

filter plates (Millipore Billerica, MA) to remove unincorporated primers and dNTPs. 261 

Sequence reactions were prepared using a BigDYE Terminator Cycle Sequencing Kit v3.1 262 

(Applied Biosystems) following manufacturer recommendations, using the same primers as 263 

those used in PCR amplification. The cycling conditions were three minutes at 96 ºC, 30 264 

cycles of 30 seconds at 96 ºC, 15 seconds at 50 ºC, four minutes at 60 ºC, and a final 265 

elongation step of three minutes at 25 ºC followed by 30 seconds at 25 ºC. Sequence products 266 

were purified using multiscreen PCR filter plates (Millipore Billerica, MA) prior to 267 

submission of DNA to the Australian Genome Research Facility (AGRF) for capillary 268 

separation on an ABI Prism 3730xl 96-capillary sequencer. The resulting sequences were 269 

compared against data on GenBank, to confirm species identification, using the Basic Local 270 

Alignment Search Tool (BLAST) available at http://blast.ncbi.nlm.nih.gov/Blast.cgi. For 271 

nuDNA, we compared genotypes derived from both blood and scat samples from the same 272 

individuals. PCR products were sent to the AGRF (Adelaide node) for capillary separation on 273 

an AB3730 DNA analyser; the resulting fragments were scored using GeneMapper ® 274 

(Applied Biosystems). Although recommended (Taberlet, Waits et al. 1999; Valiere, 275 

Bonenfant et al. 2007), we did not perform replicate PCRs for mtDNA or nuDNA in initial 276 

trials; instead we used blood DNA samples from the same individuals as a positive control. 277 

At this stage we were interested in determining if a sequence and genotype could be derived 278 

from scat DNA and, if they matched those derived from blood derived DNA. 279 

Assessment of genotyping reliability 280 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Once we identified a method for deriving genotypes from wild E. stokesii scats (see results), 281 

we assessed genotyping reliability using three independent PCRs (adopted from Panasci, 282 

Ballard et al. 2011; Stenglein, Waits et al. 2011). DNA amplification and genotyping were 283 

undertaken as uniplexes (see “validation via genotyping and sequencing” above).  284 

Results 285 

We used 81captive E. stokesii scats in preliminary trials (27 frozen, 54 dried, Table 1). Both 286 

frozen and dried samples amplified for both mtDNA and nuDNA (Table 1). Of the six 287 

extraction methods trialled using captive lizard scats, the QIAamp ® DNA Stool Mini Kit, 288 

ISOLATE Fecal DNA Kit, and modified Gentra ®Puregene ®  methods were successful for 289 

mtDNA (Table 1). The Chelex ® 100 and direct PCR methods failed to amplify mtDNA and 290 

therefore were not trialled for nuDNA. Both the 1:5 and 1:50 DNA dilutions were successful 291 

for mtDNA, while for nuDNA, neat DNA was the most successful (results not shown). The 292 

QIAamp ® DNA Stool Mini Kit and modified Gentra ®Puregene ® methods were further 293 

tested for reliability of sequencing and genotyping using captive E. stokesii scats. Of twenty 294 

captive lizard scat DNA sequences derived using the QIAamp ® DNA Stool Mini Kit (n= 17) 295 

and modified Gentra ®Puregene ® method (n = 3) assessed in BLAST, 80% (n= 16) were 296 

identified as E. stokesii, 15% (n=3) as Egernia sp, and one sequence was too short to 297 

BLAST. For nuDNA, all seven microsatellite loci were successfully derived from captive 298 

lizard scat DNA extracted using both the QIAamp ® DNA Stool Mini Kit and the modified 299 

Gentra ®Puregene ® method, and all scat derived genotypes matched those derived from 300 

blood.  301 

Based on trials using captive scats, the modified Gentra ®Puregene ® method was initially 302 

chosen for use with six wild scat samples;  mtDNA amplification was unsuccessful. In 303 

subsequent trials, using a further six wild scat samples, the PCR positive control on its own 304 

was successful yet the wild scat DNA sample spiked with the positive control failed to 305 
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amplify, suggesting the presence of inhibitors. Following application of a purification 306 

method, an additional three wild scat DNA samples amplified for mtDNA. Notably, the elute 307 

DNA of six of the 12 wild scat extractions using the modified Gentra ®Puregene ® method 308 

ranged from a light tea colour to muddy brown; whereas the elute DNA of all captive scat 309 

extractions was clear.  310 

Six wild scat samples extracted using the Qiagen DNeasy ® Plant Mini Kit were successfully 311 

sequenced and genotyped. All six samples were identified as E. stokesii using BLAST. All 312 

seven microsatellite DNA loci could be scored and the resulting genotypes matched those 313 

derived from blood. The elute DNA was clear for all wild scats extracted using the Qiagen 314 

DNeasy ® Plant Mini Kit. Successful mtDNA PCR reaction quantifications are available as 315 

Supplementary Material on the Journal website. The reliability of genotypes derived from 316 

DNA extracted using the Qiagen DNeasy ® Plant Mini Kit was further assessed for seven 317 

loci in five wild E. stokesii scat samples. All loci amplified in all replicates for all samples, 318 

except the locus for TrL 35 which failed in all replicates for one sample. Matching 319 

heterozygotes were observed in all replicates for most samples, with three exceptions. Firstly, 320 

all replicates for Est 1 and TrL 28 in one sample showed identical homozygotes. Secondly, 321 

allelic dropout was evident for Est1 in one sample which showed two matching heterozygotes 322 

and one homozygote. Lastly, for TrL 28 in one sample, two replicates showed matching 323 

homozygotes, one a heterozygote, suggesting either allelic dropout in two replicates or a false 324 

allele in one replicate.  325 

Discussion 326 

We have identified a reliable method for deriving DNA sequences and genotypes from wild 327 

E. stokesii scat samples. Genotypes and sequences were successfully derived from DNA 328 

extracted from field collected scats using a Qiagen DNeasy ® Plant Mini Kit. The reliability 329 

of genotypes derived using this method was supported by identical results from replicate 330 
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PCRs. Adoption of this method would complement traditional capture-mark-recapture 331 

methods for estimating local abundance of E. stokesii and other lizard species, and for 332 

estimating genetic structure and diversity, particularly for those species that create easily 333 

sampled scat piles. Co-located scats provide greater confidence of matching of scat to lizard 334 

location, making this a potentially useful tool for assessing social structures and relatedness 335 

among social group members. In addition, this method provides an alternative, non-invasive 336 

technique for threatened or secretive lizards.  337 

Two DNA extraction methods (QIAamp ® DNA Stool Mini Kit and modified Gentra 338 

®Puregene ® method) were successful for captive scats although success rates decreased 339 

when applied to wild scats. On the other hand, the Qiagen DNeasy ® Plant Mini Kit 340 

successfully extracted DNA from wild scats; suggesting plant inhibitors present in scats of 341 

herbivorous lizards may often prevent amplification of DNA unless they are filtered out. 342 

Although both mtDNA and nuDNA were successfully amplified from frozen and dried 343 

captive lizard scat samples, the drying method will be more suitable when sampling in semi-344 

arid to arid locations away from electricity supplies.  345 

As false alleles and allelic dropout may arise in scat samples with low quality and quantity of 346 

DNA (Broquet and Petit 2004; Taberlet, Waits et al. 1999; Valiere, Bonenfant et al. 2007) 347 

error checking protocols should normally be adopted. DNA amplification replicates and 348 

assessment using a consensus approach have previously been suggested (Broquet and Petit 349 

2004; Navidi, Arnheim et al. 1992; Taberlet, Waits et al. 1999) and an assessment of power 350 

such as probability of identity is recommended (Valiere 2002). The use of replicate PCRs to 351 

assess the reliability of genotypes derived from DNA extracted, as we have doneusing the 352 

Qiagen DNeasy ® Plant Mini Kit is  recommended.  For this method to be adopted for this or 353 

other reptile species, a comprehensive pilot study should be undertaken that incorporates 354 

genotyping error rates into study design. In addition, as methods are not necessarily 355 
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transferable between species (Taberlet, Waits et al. 1999) preliminary trials are recommended 356 

prior to use with other lizard species. 357 

There are other potential problems when deriving lizard DNA from their scats. We found 358 

reptile scales on the surface of some captive and wild scats (Pearson, pers. obs.). Captive 359 

lizards were isolated so it could be assumed that in those cases the scales belonged to the 360 

lizard from which scats were collected. The same assumption cannot be made for field 361 

collected scats as lizards may eat the sloughed skin of other individuals, or even conspecific 362 

neonates (Lanham and Bull 2004), potentially contaminating the sample with other 363 

conspecific DNA. Further, the co-location of scats may result in cross contamination between 364 

scats that are in contact but from different individuals. Also DNA extraction and 365 

amplification success is likely to decline with scat age as the DNA deteriorates (Demay, 366 

Becker et al. 2013). Wild samples used in this study were fresh; however we recommend 367 

future studies that adopt the method identified in this work consider temporal sampling 368 

thresholds. 369 

A further potential complication is the identification of the scats of the target species. In this 370 

study, few other lizard species were sighted during the sampling of wild E. stokesii and the 371 

size and location of E. stokesii scats in piles immediately outside occupied crevice entrances 372 

facilitated identification. However, geckos were present and gecko scats may be confused 373 

with sub-adult E. stokesii scats, although species identification may be verified via 374 

sequencing. In addition, the field sites used in this study consisted of rocky outcrops with 375 

sparse vegetation where scats were easily found. Scats may be harder to locate and identify in 376 

an area with denser vegetation or higher lizard diversity. Knowledge of the behaviour of the 377 

target species and an awareness of other resident and transient species would be essential in 378 

such cases. However, this study indicates that more confidence may be applied to the 379 
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identification of scat from scat piling species, making non-invasive genetic sampling 380 

particularly applicable for such species. 381 
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Figures and tables: 391 

 392 

Table 1. Results of captive E. stokesii scat trials 393 

Showing the number of scats used in trial for each storage and DNA extraction method, and 394 

numbers (%) successfully amplified for mt- and nuDNA for each storage and DNA extraction 395 

method. 396 

Extraction method Storage method mtDNA amplified nuDNA amplified 

Frozen* Dried* Frozen Dried Frozen Dried 

QIAamp ® DNA Stool Mini Kit 11 20 10 (91) 20 (100) 9 (82) 17 (85) 

ISOLATE Fecal DNA Kit 4 16 3 (75) 11 (69) 1 (25) 4 (25) 

Direct 3 3 0 0 n/a n/a 

Chelex with boiling 3 3 0 0 n/a n/a 

Chelex without boiling 3 3 0 0 n/a n/a 

Modified Gentra ® Puregene ® 

method 

3 9 3 (100) 9 (100) 3 (100) 9 (100) 

Total 27 54 16 40 13 30 

* Frozen: -20°C, Dried: sprayed with 90% ethanol then stored on silica beads at room 397 

temperature 398 

 399 

400 
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