8 research outputs found

    A screening system to identify transcription factors that induce binding site-directed DNA demethylation

    No full text
    Abstract Background DNA methylation is a fundamental epigenetic modification that is involved in many biological systems such as differentiation and disease. We and others recently showed that some transcription factors (TFs) are involved in the site-specific determination of DNA demethylation in a binding site-directed manner, although the reports of such TFs are limited. Results Here, we develop a screening system to identify TFs that induce binding site-directed DNA methylation changes. The system involves the ectopic expression of target TFs in model cells followed by DNA methylome analysis and overrepresentation analysis of the corresponding TF binding motif at differentially methylated regions. It successfully identified binding site-directed demethylation of SPI1, which is known to promote DNA demethylation in a binding site-directed manner. We extended our screening system to 15 master TFs involved in cellular differentiation and identified eight novel binding site-directed DNA demethylation-inducing TFs (RUNX3, GATA2, CEBPB, MAFB, NR4A2, MYOD1, CEBPA, and TBX5). Gene ontology and tissue enrichment analysis revealed that these TFs demethylate genomic regions associated with corresponding biological roles. We also describe the characteristics of binding site-directed DNA demethylation induced by these TFs, including the targeting of highly methylated CpGs, local DNA demethylation, and the overlap of demethylated regions between TFs of the same family. Conclusions Our results show the usefulness of the developed screening system for the identification of TFs that induce DNA demethylation in a site-directed manner

    MOESM1 of A screening system to identify transcription factors that induce binding site-directed DNA demethylation

    No full text
    Additional file 1: Figure S1. TF overexpression and TFBM overrepresentation in methylated regions. (a) ChIP-seq analysis for PU.1 binding. Fold enrichment is the ration of ChIPed DNA and IgG control. Error bars represent SD. The experiments were performed in 2 biological replicates. (b) Fold change of overexpressed TFs. X- and Y-axes show overexpressed TFs and fold change of the expression compared with mock control (log2 scale), respectively. Mean and standard deviation (error bars) are shown. The experiment was performed in triplicate. (c) Distribution of enrichment scores for TF binding motifs within ± 5000 bp of differentially methylated CpGs in TF-overexpressing 293T cells. X- and Y-axes show distance from probe CpG position and enrichment score, respectively. Horizontal lines are enrichment score = 0

    An atlas of active enhancers across human cell types and tissues

    No full text
    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation

    An atlas of active enhancers across human cell types and tissues

    Get PDF
    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation

    An atlas of active enhancers across human cell types and tissues

    No full text
    corecore