82 research outputs found

    Food limitation of seabirds in the Benguela ecosystem and management of their prey base

    Get PDF
    This is the final version. Available from the Environmental Information Service, Namibia via the URL in this record. Four of seven seabirds that are endemic to the Benguela ecosystem (African Penguin Spheniscus demersus, Cape Gannet Morus capensis, Cape Cormorant Phalacrocorax capensis, Bank Cormorant P. neglectus) compete with fisheries for prey and have an IUCN classification of Endangered. Prey depletion and food resource limitations have been major drivers of recent large population decreases of each of these species. As populations decrease, colony sizes also dwindle rendering them susceptible to Allee effects and higher probabilities of extinction. Therefore, it is necessary to maintain colonies at sizes that minimise their probability of extinction. Means to ensure an adequate availability of food to achieve this goal include closing important seabird foraging areas (often adjacent to key colonies) to relevant fishing, implementing ecosystem thresholds below which such fishing is disallowed (which are also expected to benefit forage resources) and, should there be an altered distribution of prey, attempting to establish seabird colonies close to the new location of forage resources.The Pew Charitable Trust

    Climate driven life histories: the case of the Mediterranean Storm petrel

    Get PDF
    Seabirds are affected by changes in the marine ecosystem. The influence of climatic factors on marine food webs can be reflected in long-term seabird population changes. We modelled the survival and recruitment of the Mediterranean storm petrel (Hydrobates pelagicus melitensis) using a 21-year mark-recapture dataset involving almost 5000 birds. We demonstrated a strong influence of prebreeding climatic conditions on recruitment age and of rainfall and breeding period conditions on juvenile survival. The results suggest that the juvenile survival rate of the Mediterranean subspecies may not be negatively affected by the predicted features of climate change, i.e., warmer summers and lower rainfall. Based on considerations of winter conditions in different parts of the Mediterranean, we were able to draw inferences about the wintering areas of the species for the first time

    Surveillance biopsies in children post-kidney transplant

    Get PDF
    Surveillance biopsies are increasingly used in the post-transplant monitoring of pediatric renal allograft recipients. The main justification for this procedure is to diagnose early and presumably modifiable acute and chronic renal allograft injury. Pediatric recipients are theoretically at increased risk for subclinical renal allograft injury due to their relatively large adult-sized kidneys and their higher degree of immunological responsiveness. The safety profile of this procedure has been well investigated. Patient morbidity is low, with macroscopic hematuria being the most common adverse event. No patient deaths have been attributed to this procedure. Longitudinal surveillance biopsy studies have revealed a substantial burden of subclinical immunological and non-immunological injury, including acute cellular rejection, interstitial fibrosis and tubular atrophy, microvascular lesions and transplant glomerulopathy. The main impediment to the implementation of surveillance biopsies as the standard of care is the lack of demonstrable benefit of early histological detection on long-term outcome. The considerable debate surrounding this issue highlights the need for multicenter, prospective, and randomized studies

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    Transplanted progenitors generate functional enteric neurons in the postnatal colon

    No full text
    Fulltext embargoed for: 6 months post date of publicationCell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies

    Colonizing while migrating: How do individual enteric neural crest cells behave?

    Get PDF
    Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analysed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behaviour of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut
    • …
    corecore