376 research outputs found

    Hall effect encoding of brushless dc motors

    Get PDF
    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages

    Xpert® MTB/RIF assay testing on stool for the diagnosis of paediatric pulmonary TB in Tanzania.

    Get PDF
    SETTING: Six health facilities in Dar es Salaam, Tanzania. OBJECTIVE: To evaluate the use of stool specimens in the diagnostic workup of paediatric TB using the Xpert® MTB/RIF assay. DESIGN: Between December 2018 and May 2019, we performed a cross-sectional diagnostic study of children aged between 1 month and 14 years with presumptive TB. A single stool specimen was tested using Xpert. The result was compared with the reference microbiological standard for respiratory or gastric specimens tested using Xpert and/or solid culture. The sensitivity, specificity and predictive values of stool Xpert assay were assessed. RESULTS: A total of 225 children with a median age of 2.17 years (IQR 1.16-5.19) were enrolled; 165/225 (73.3%) were aged <5 years. Of 225 children, 8 (3.6%) were diagnosed with TB as they were culture- or Xpert-positive on sputum/gastric aspirate. The stool Xpert assay showed a sensitivity of 62.5% (95% CI 25-92) and specificity of 100% (95% CI 98-100) against the reference standard. CONCLUSION: Use of the Xpert assay on stool specimens had a moderate sensitivity and high specificity in the diagnosis of pulmonary TB in children. Our data adds to the body of evidence for the use of Xpert assay on stool as a non-respiratory specimen to complement conventional methods used to diagnose the disease

    A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules

    Get PDF
    Many cell stressors block protein translation, inducing formation of cytoplasmic aggregates. These aggregates, named stress granules (SGs), are composed by translationally stalled ribonucleoproteins and their assembly strongly contributes to cell survival. Composition and dynamics of SGs are thus important starting points for identifying critical factors of the stress response. In the present study we link components of the H/ACA snoRNP complexes, highly concentrated in the nucleoli and the Cajal bodies, to SG composition. H/ACA snoRNPs are composed by a core of four highly conserved proteins -dyskerin, Nhp2, Nop10 and Gar1- and are involved in several fundamental processes, including ribosome biogenesis, RNA pseudouridylation, stabilization of small nucleolar RNAs and telomere maintenance. By taking advantage of cells overexpressing a dyskerin splice variant undergoing a dynamic intracellular trafficking, we were able to show that H/ACA snoRNP components can participate in SG formation, this way contributing to the stress response and perhaps transducing signals from the nucleus to the cytoplasm. Collectively, our results show for the first time that H/ACA snoRNP proteins can have additional non-nuclear functions, either independently or interacting with each other, thus further strengthening the close relationship linking nucleolus to SG composition

    Inferring loop invariants by mutation, dynamic analysis, and static checking

    Get PDF
    Verifiers that can prove programs correct against their full functional specification require, for programs with loops, additional annotations in the form of loop invariants - properties that hold for every iteration of a loop. We show that significant loop invariant candidates can be generated by systematically mutating postconditions; then, dynamic checking (based on automatically generated tests) weeds out invalid candidates, and static checking selects provably valid ones. We present a framework that automatically applies these techniques to support a program prover, paving the way for fully automatic verification without manually written loop invariants: Applied to 28 methods (including 39 different loops) from various Java.util classes (occasionally modified to avoid using Java features not fully supported by the static checker), our DYNAMATE prototype automatically discharged 97 percent of all proof obligations, resulting in automatic complete correctness proofs of 25 out of the 28 methods - outperforming several state-of-the-art tools for fully automatic verification

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Integrating discrete- and continuous-time metric temporal logics through sampling

    Get PDF
    Abstract. Real-time systems usually encompass parts that are best described by a continuous-time model, such as physical processes under control, together with other components that are more naturally formalized by a discrete-time model, such as digital computing modules. Describing such systems in a unified framework based on metric temporal logic requires to integrate formulas which are interpreted over discrete and continuous time. In this paper, we tackle this problem with reference to the metric temporal logic TRIO, that admits both a discrete-time and a continuous-time semantics. We identify sufficient conditions under which TRIO formulas have a consistent truth value when moving from continuous-time to discrete-time interpretations, or vice versa. These conditions basically involve the restriction to a proper subset of the TRIO language and a requirement on the finite variability over time of the basic items in the specification formulas. We demonstrate the approach with an example of specification and verification

    The SUCCESSO-TERRA project: A lesson of sustainability from the terramare culture, middle bronze age of the po plain (Northern Italy)

    Get PDF
    This backstory article deals with the SUCCESSO-TERRA Project (2017–2020), an interdisciplinary research program aiming at reconstructing the land-use transformations that occurred during the development of the Terramare culture in the southern-central Po Plain of Northern Italy. Topics include climate-environment changes, human impact and exploitation of natural resources that are interconnected topics in human ecology and environmental sciences. These topics can only be understood in a long-term perspective integrating archaeology, geology, botany and other sciences. The text includes the theoretical basis, the research strategy and the main methodological approaches given by geoarchaeology and palynology, the two research sides constituting the partnership of the project

    Nanoscale Distribution of Nuclear Sites by Super-Resolved Image Cross-Correlation Spectroscopy

    Get PDF
    Deciphering the spatiotemporal coordination between nuclear functions is important to understand its role in the maintenance of human genome. In this context, super-resolution microscopy has gained considerable interest because it can be used to probe the spatial organization of functional sites in intact single-cell nuclei in the 20\u2013250 nm range. Among the methods that quantify colocalization from multicolor images, image cross-correlation spectroscopy (ICCS) offers several advantages, namely it does not require a presegmentation of the image into objects and can be used to detect dynamic interactions. However, the combination of ICCS with super-resolution microscopy has not been explored yet. Here, we combine dual-color stimulated emission depletion (STED) nanoscopy with ICCS (STED-ICCS) to quantify the nanoscale distribution of functional nuclear sites. We show that super-resolved ICCS provides not only a value of the colocalized fraction but also the characteristic distances associated to correlated nuclear sites. As a validation, we quantify the nanoscale spatial distribution of three different pairs of functional nuclear sites in MCF10A cells. As expected, transcription foci and a transcriptionally repressive histone marker (H3K9me3) are not correlated. Conversely, nascent DNA replication foci and the proliferating cell nuclear antigen(PCNA) protein have a high level of proximity and are correlated at a nanometer distance scale that is close to the limit of our experimental approach. Finally, transcription foci are found at a distance of 130 nm from replication foci, indicating a spatial segregation at the nanoscale. Overall, our data demonstrate that STED-ICCS can be a powerful tool for the analysis of the nanoscale distribution of functional sites in the nucleus
    corecore