500 research outputs found

    Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype

    Get PDF
    Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities. © 2013 Chan et al

    A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells

    Get PDF
    Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-β3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes. © 2014 Karamichos et al

    Early wound healing of laser in situ keratomileusis?like flaps after treatment with human corneal stromal stem cells

    Get PDF
    To use a well-established organ culture model to investigate the effects of corneal stromal stem cells on the optical and biomechanical properties of corneal wounds after laser in situ keratomileusis (LASIK)-like flap creation. School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom. Experimental study. The LASIK-like flaps were produced in sheep corneas. The flap beds were treated with corneal stromal stem cells and were then replaced and allowed to heal for different periods of up to 3 weeks in organ culture. The optical transmission of the cornea, the force required to detach the flap, and the presence of myofibroblasts near the flap bed were measured.Corneal stromal stem cell-treated flap beds were statistically significantly more transparent after 3 weeks in culture than the untreated controls. At 3 weeks, the mean force necessary to detach the flap was more than twice the force required for the respective control samples. Concurrently, there were 44% activated cells immediately below the flap margin of the controls compared with 29% in the same region of the corneal stromal stem cell-treated flaps. In this system, the presence of corneal stromal stem cells at the wound margin significantly increased the adherence of LASIK-like flaps while maintaining corneal transparency. It is postulated that this is achieved by the deposition of extracellular connective tissue similar to that found in the normal cornea and by the paucity of activated keratocytes (myofibroblasts), which are known to scatter a significant amount of the incident light. No author has a financial or proprietary interest in any material or method mentioned

    Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents.

    Get PDF
    Human limbal epithelial cells (HLE) and corneal stromal stem cells (CSSC) reside in close proximity in vivo in the corneal limbal stem cell niche. However, HLE are typically cultured in vitro without supporting niche cells. Here, we re-create the cell-cell juxtaposition of the native environment in vitro, to provide a tool for investigation of epithelial-stromal cell interactions and to optimize HLE culture conditions for potential therapeutic application. RAFT (Real Architecture For 3D Tissue) tissue equivalents (TEs) were used as a 3-dimensional substrate for co-culturing HLE and CSSC. Our results demonstrate that a monolayer of HLE that maintained expression of p63α, ABCB5, CK8 and CK15 (HLE markers), formed on the surface of RAFT TEs within 13 days of culture. CSSC remained in close proximity to HLE and maintained expression of mesenchymal stem cell markers. This simple technique has a short preparation time of only 15 days with the onset of HLE layering and differentiation observed. Furthermore, co-cultivation of HLE with another niche cell type (CSSC) directly on RAFT TEs, eliminates the requirement for animal-derived feeder cells. RAFT TEs may be useful for future therapeutic delivery of multiple cell types to restore the limbal niche following ocular surface injury or disease

    Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan

    Get PDF
    Three antibodies reacting with corneal keratan sulfate proteoglycan were used to detect antigenically related molecules in 11 bovine and 13 embryonic chick tissues. Two monoclonal antibodies recognized sulfated epitopes on the keratan sulfate chain and a polyclonal antibody bound antigenic sites on the core protein of corneal keratan sulfate proteoglycan. Competitive immunoassay detected core protein and keratan sulfate antigens in guanidine HCl extracts of most tissues. Keratan sulfate antigens of most bovine tissues were only partially extracted with guanidine HCl, but the remainder could be solubilized by CNBr treatment of the guanidine-extracted residue. Keratan sulfate and core protein antigens co-eluted with purified corneal keratan sulfate proteoglycan on ion exchange high-performance liquid chromatography (HPLC). Endo-beta-galactosidase digestion of the HPLC-purified keratan sulfate antigens eliminated the binding of monoclonal anti-keratan sulfate antibodies in enzyme-linked immunosorbent assay. Extracts of all 11 bovine tissues, except those from brain and cartilage, could bind both anti-keratan sulfate monoclonal antibodies and anti-core protein polyclonal antibody simultaneously. Binding was sensitive to competition with keratan sulfate and to digestion with endo-beta-galactosidase. These results suggest widespread occurrence of a proteoglycan or sulfated glycoprotein bearing keratan sulfate-like carbohydrate and a core protein resembling that of corneal keratan sulfate proteoglycan

    Human corneal stromal stem cells exhibit survival capacity following isolation from stored organ-culture corneas

    Get PDF
    Purpose. To assess the suitability of human donor corneas maintained in long-term organ culture for the isolation and expansion of viable and functional corneal stromal stem cells (CSSCs). These cells display properties similar to mesenchymal stem cells and demonstrate the ability to reproduce an organized matrix in vitro. Therefore, CSSCs have great potential for the development of cell-based therapies for corneal blindness or stromal tissue bioengineering. Methods. Human donor corneas that had been stored either in organ-culture medium (OC) up to 4 weeks (n = 3) or in Optisol medium (OS) up to 6 days (n = 3) were used for isolation of CSSCs and maintained in culture until passage 4. Cell phenotype of isolated CSSCs was assessed with light microscopy and immunocytochemistry (PAX6, CD73, and CD90). PAX6 protein expression was further confirmed with immunoblot analysis. Results. A comparison of CSSCs isolated from corneas stored under OC and OS conditions revealed no obvious differences in their morphology. Immunocytochemistry revealed CSSCs from both OC and OS corneas maintained positive staining for PAX6 and mesenchymal stem cell markers CD73 and CD90. Immunoblotting confirmed protein expression of PAX6 in cells from both tissue types. Conclusions. Human CSSCs exhibit survival capacity by retaining their phenotype following isolation from long storage, OC corneas. This advantageous property enables the retrieval of CSSCs from OC corneas that are more abundantly available for research than OS-stored corneas. Organ-culture corneas are also often discarded for retrieval of other cell types, such as corneal epithelial and endothelial cells, which require high tissue quality for their preservation

    Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche

    Get PDF
    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein

    Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype

    Get PDF
    Abstract Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities
    • …
    corecore