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Abstract  

Keratocytes of the corneal limbal stroma can derive populations of mesenchymal stem cells 

(MSC) when expanded in vitro. However, once a corneal MSC (cMSC) phenotype is achieved, 

regaining the keratocyte phenotype can be challenging, and there is no standardised 

differentiation medium. Here, we investigated the transition of keratocytes to cMSC and 

compared different supplements in their ability to return cMSC to a keratocyte phenotype. 

Immunofluorescence and RT-qPCR demonstrated in vivo keratocyte expression of ALDH3A1, 

CD34 and keratocan, but not any of the typical MSC markers (CD73, CD90, CD105). As the 

keratocytes were expanded in vitro, the phenotypic profile reversed and the cells expressed 

MSC markers but not keratocyte markers. Differentiating the cMSC back to a keratocyte 

phenotype using non-supplemented, serum-free medium restored keratocyte markers but 

did not maintain cell viability or support corneal extracellular matrix (ECM) production. 

Supplementing the differentiation medium with combinations of fibroblast growth factor-2 

(FGF-2), transforming growth factor-β3 (TGF-β3) and retinoic acid (RA) maintained viability, 

restored expression of CD34, ALDH3A1 and keratocan, and facilitated production of 

abundant ECM as shown by immunofluorescent staining for collagen-I and lumican, 

alongside quantitative assays for collagen and glycosaminoglycan production. However, no 

differentiation medium was able to downregulate the expression of MSC markers in the 21-

day culture period. This study shows that the keratocyte to MSC transition can be partially 

reversed using serum-free media and supplementation with RA, FGF-2 and TGF-β3 can 

enhance this effect. This is relevant for development of corneal regenerative strategies that 

require the production of a keratocyte phenotype. 
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1. Introduction 

The development of regenerative medicine therapies that include the use of stem cells to 

replace injured and diseased cells is one option for the treatment of corneal injuries (Patel 

et al. 2013). Effective vision is reliant on maintaining the structure and organisation of the 

extracellular matrix (ECM) of the corneal stroma (Jester et al. 1999, Funderburgh et al. 2003, 

Hassell and Birk 2010), which is produced and remodelled by the resident keratocytes 

(Poole et al. 1993, West-Mays and Dwivedi 2006). Keratocytes are mesenchymal cells with 

dendritic morphology, which when healthy remain quiescent. They replenish ECM proteins 

including collagen-I, and proteoglycans such as keratocan and lumican (Marshall et al. 1991, 

Michelacci 2003, Hassell and Birk 2010). Keratocytes also produce crystallins such as 

aldehyde dehydrogenase (ALDH) and transketolase (Jester et al. 1999, Sax et al. 2000, Jester 

et al. 2012) and express cell surface markers CD34 and CD133 (Joseph et al. 2003, Du et al. 

2005, Perrella et al. 2007). 

Trauma to the cornea causes keratocytes adjacent to the wound to take on a fibroblastic 

phenotype, in a process known as activation (West-Mays and Dwivedi 2006). Activation is 

associated with stromal tissue remodelling, scar formation and corneal opacity 

(Funderburgh et al. 2003). Activated cells begin to express markers, such as CD90 (Pei et al. 

2004) and can go on to develop a contractile myofibroblast phenotype, expressing α-

smooth muscle actin (α-SMA) (Jester et al. 1995, Helary et al. 2006, West-Mays and Dwivedi 

2006). 

Activation also occurs in vitro, stimulated when keratocytes are extracted and cultured on 

tissue culture plastic, particularly in serum-containing medium (Branch et al. 2012, 

Hashmani et al. 2013). We have previously demonstrated  that keratocytes (often referred 
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to as corneal stromal cells (CSC) when cultured in vitro) that have been extracted from the 

peripheral and limbal stroma and cultured to passage 4, have a phenotype that conforms to 

the current criteria for multipotent mesenchymal stem cells (MSC) set by the International 

Society for Cellular Therapy (ISCT) (Branch et al. 2012, Hashmani et al. 2013). This criteria 

states that to be considered a population of MSC, over 95% of cells should express CD73, 

CD90 and CD105; under 2% of cells should express CD11b, CD14, CD19, CD34, CD45 and 

HLA-DR; and the cells should possess the ability to undergo adipogenesis, osteogenesis and 

chondrogenesis in vitro (Dominici et al. 2006). The resultant corneal MSC (cMSC), has a very 

different phenotype to an in vivo keratocyte.   

There is little evidence to show that the keratocyte phenotype can be maintained from 

extraction in vitro, particularly in human cells. However, there is some evidence that the 

keratocyte phenotype can be regained once lost, using various techniques and culture 

medium supplementation. Several studies have shown bovine and rabbit CSC can be 

partially restored to keratocyte phenotype simply using serum-free medium with no other 

supplementation (Berryhill et al. 2002, He and Bazan 2008, Chen et al. 2009). However, 

there is considerable variation in keratocyte properties between species, and results in 

animals cannot always be translated to humans (Jester et al. 2005). For human CSC, there is 

limited evidence that serum-free medium alone can support differentiation, but in many 

cases, supplementation in the form of insulin, transferrin, selenium and ascorbate is 

required to maintain cell viability (Musselmann et al. 2005, Du et al. 2010, Foster et al. 

2015). Additional supplements that have also been suggested include fibroblast growth 

factor-2 (FGF-2) (Du et al. 2010, Lakshman and Petroll 2012, Wu et al. 2012), transforming 

growth factor-β3 (TGF- β3)(Wu et al. 2013, Wu et al. 2014) and retinoic acid (RA) (Gouveia 
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and Connon 2013). However, the potency of these media supplements to differentiate 

cultured CSC or cMSC back to the keratocyte phenotype has never been compared. 

It is critical that a reliable method to return CSC or cMSC to a keratocyte phenotype is 

developed, that results in cells that express keratocyte markers, do not express fibroblast 

markers and produce relevant stromal ECM. If it is achievable to obtain a keratocyte 

phenotype from fibroblast and myofibroblast populations, these populations could be 

grown to large numbers and then dedifferentiated back to the keratocyte, to be used 

clinically in cell therapies and tissue-engineered strategies. This would decrease the number 

of keratocytes, and therefore corneas, that are required to manufacture such therapies. 

Herein, we investigate the transition of keratocytes to the cMSC phenotype and compare 

various supplements in their ability to return cMSC to a keratocyte phenotype. 

 

2. Methods 

2.1 Materials 

All reagents were purchased from Sigma-Aldrich, Poole, UK, unless otherwise stated. 

 

2.2 Tissue 

Human donor tissue was used with approval by the local ethics research committee and in 

accordance with the tenets of the Declaration of Helsinki, following consent obtained from 

the donors and/or their relatives. 

 



 

 
This article is protected by copyright. All rights reserved. 

2.3 Extraction, Culture and Differentiation of cMSC 

Human keratocytes were isolated from corneoscleral rims, as previously described (Branch 

et al. 2012). Briefly, stromal tissue pieces were digested in 1 mg/mL collagenase type IA for 

7 hours at 37°C. Digests were filtered through a 40 μm cell strainer, pelleted and cMSC were 

cultured in M199 supplemented with 20% (v/v) foetal bovine serum (FBS), 2 mM L-

Glutamine and 20 ng/mL gentamicin and 0.5 ng/mL amphotericin B (antibiotics, Life 

Technologies, Paisley, UK). Cultured keratocytes were maintained at 37°C, 5% (v/v) CO2, 

with medium changes every 2-3 days. Cells were passaged using treatment with TrypLE™ 

Express (Life Technologies). 

For keratocyte differentiation, cMSC at P3 were seeded at 10,500 cells/cm2, to be P4 in the 

culture plate. After a proliferation phase of 3 days, media was changed to one of six 

different keratocyte differentiation media (see table 1). Cells were maintained in 

differentiation media for up to 21 days before analysis. Controls in the differentiation 

experiments were performed in M199 containing 20% (v/v) FBS, 2 mM L-Glutamine and 20 

ng/mL gentamicin and 0.5 ng/mL amphotericin B.  

 

2.4 Immunofluorescent staining of cornea sections and fixed cells 

Whole human corneas were snap frozen in optimal cutting temperature compound (VWR, 

West Sussex, UK). Specimens were cut into 8 μm sections using a cryostat-microtome (Leica 

Microsystems, UK) and fixed in ice-cold 100% acetone for 30 seconds. 

Cellular samples were seeded at 10,500 cell/cm2 in cultured in glass chamber slides, allowed 

to adhere overnight and were subsequently fixed in 4% buffered paraformaldehyde for 10 



 

 
This article is protected by copyright. All rights reserved. 

minutes. After washing in PBS, cells were permeabilised, where appropriate, in 0.1% (v/v) 

Triton X-100 for 5 minutes with subsequent PBS washing. 

From this point, the immunofluorescent staining protocol for both sections and cell samples 

was identical. Samples were blocked in 1% (v/v) bovine serum albumin (BSA), 0.3 M glycine 

and 3% (v/v) donkey serum at room temperature for 1 hour. Incubation with primary 

antibodies (see table 2) took place at 4°C overnight. Samples washed, then incubated with 

secondary antibodies (table 2) for one hour at room temperature. Actin staining was 

performed with Alexa Fluor-488 conjugated phalloidin (Life Technologies). Counterstaining 

with 0.5 μg/mL DAPI was performed and slides were mounted in fluorescence mounting 

medium (Dako, Cambridgeshire, UK). Staining was viewed using an upright fluorescence 

microscope (BX51, Olympus) and images captured with a black and white camera (XM-10, 

Olympus) and Cell^F software (Olympus). 

 

2.5 Quantitative reverse transcription polymerase chain reaction (RT-qPCR)  

Epithelium and endothelium were stripped from whole human corneas and the stromal 

tissue snap frozen in liquid nitrogen and ground in a mortar and pestle. Ground tissue was 

then lysed in buffer RLT and homogenised in QIAshredder columns (Qiagen, Manchester, 

UK). Alternatively, cell monolayers were lysed directly in RLT buffer and homogenized using 

QIAshredder columns. Total RNA was extracted using an RNeasy mini kit (Qiagen) according 

to manufacturer’s instructions. RNA was quantified using the L-Vis plate on a CLARIOstar 

plate reader (BMG LABTECH, Buckinghamshire, UK). 250 ng of RNA was transcribed into 

cDNA using Superscript III reverse transcriptase with random hexamer primers, according to 
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manufacturer’s instructions (Life Technologies). For PCR reactions, 1 μL of cDNA was used 

with inventoried Taqman assays (table 3). Amplification was performed on an Mx3005P PCR 

system (Stratagene, Stockport, UK). Reactions were analysed using the Real Time PCR Miner 

algorithm (Zhao and Fernald 2005). All experimental values were normalised to endogenous 

reference gene GAPDH. 

 

2.6 Cell proliferation and viability 

Cell viability was assessed by PrestoBlue™ Cell Viability Reagent (Life Technologies), on days 

3, 6, 10, 14, 18 and 21.  Cells were washed in PBS and 10% (v/v) PrestoBlue reagent in 

medium was added to each well and incubated for 20 minutes at 37°C. Aliquots of 100 μL 

were transferred to black 96-well plates and fluorescence readings were taken at excitation 

560 nm/emission 590 nm using a CLARIOstar plate reader. 

 

2.7 Quantitative assay for sulphated glycosaminoglycans 

Cell monolayers were digested in a 0.1 mg/mL papain solution in 0.2 M sodium phosphate 

buffer containing 8 mg/mL sodium acetate, 4 mg/mL ethylenediaminetetraacetic acid, and 

0.8 mg/mL  L-cysteine hydrochloride at 65°C overnight. The Blyscan™ 1,9 dimethyl 

methylene blue (DMMB) assay (Biocolor Ltd., Belfast, UK) assay was performed on samples 

according to manufacturer’s instructions. Briefly, 200 μL of medium sample or papain digest 

was added to 1 mL DMMB dye solution and agitated for 30 minutes, before centrifugation 

at 10,000 x g for 10 minutes. The pellet was dissolved in 0.5 mL dissociation reagent and 200 

μL transferred to each well of a 96-well plate. Absorbance was measured at 656 nm. sGAG 
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concentration was determined using a standard curve. sGAG readings were corrected for 

DNA content of cells present, determined by fluorescent Hoechst 33258 readings, at 

excitation wavelength 360 nm and emission wavelength 460 nm.  

 

2.7 Hydroxyproline Assay 

Hydroxyproline assays were performed as described previously (Edwards and O'Brien 1980) 

to estimate the concentration of collagen released into the culture medium and laid down in 

the cell monolayer. Briefly, acid hydrolysis of media samples and papain digested cell 

monolayers was achieved by heating samples with concentrated hydrochloric acid to 120 °C 

for 5 hours. Subsequently, samples were dried at 80 °C until only residue remained, which 

was dissolved in 0.2 M sodium phosphate buffer. Samples were transferred in triplicate to a 

96-well plate, an equal volume of 70 mM chloramine T solution was added and incubated at 

room temperature for 20 minutes. Subsequently, an equal volume of 1.16 M 

dimethylaminobenzaldehyde solution was added and samples incubated at 60 °C for 30 

minutes. Colour change was assessed by absorbance at 540 nm. Hydroxyproline 

concentration was calculated using a standard curve. Collagen concentration was estimated 

using a conversion factor of 7.6. Collagen readings were corrected for DNA content of cells 

present, determined by fluorescent Hoechst 33258 readings.  

 

2.9 Statistical Analysis 

Significances were analysed using GraphPad Prism version 6.02. Multiple groups were 

compared using one-way ANOVA with post-hoc Dunnett’s test. 
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3. Results 

3.1 Keratocytes transition to a cMSC phenotype upon extraction and passage 

Sections of human cornea peripheral and central stroma, extracted and cultured 

keratocytes at passage 1 (P1) and cultured keratocytes at P4 (cMSC) were stained for 

markers associated with keratocytes (ALDH3A1, CD34, keratocan, vimentin), MSC (CD73, 

CD90, CD105) and myofibroblasts (α-SMA (figure 1). The corneal stroma (both central and 

peripheral) showed positive staining for keratocyte markers ALDH3A1 (fig. 1 Ai), CD34 (fig. 1 

Aii), keratocan (fig. 1 Aiii) and vimentin (fig. 1 Aiv). Expression of keratocyte markers 

decreased upon extraction and passage. All cells in the P1 population showed ALDH3A1 (fig. 

1 Bi) and vimentin (fig. 1 Biv) staining. Some cells of the P1 population also stained for CD34 

(fig. 1 Bii) and keratocan (fig. 1 Biii). In the P4 cMSC population, ALDH3A1 (fig. 1 Ci) and 

vimentin (fig. 1 Civ) were maintained but there was no longer any staining for CD34 (fig. 1 

Cii) or keratocan (fig. 1 Ciii). The reverse trend occurred with MSC markers; markers were 

not present in the corneal stroma and appeared with extraction and passage. There was no 

expression of CD73 (fig. 1 Av), CD90 (fig. 1 Avi) or CD105 (fig. 1 Avii) in the corneal stroma. 

At P1, there was a low amount of staining for CD73 (fig. 1 Bv), CD90 (fig. 1 Bvi) and CD105 

(fig. 1 Bvii). At P4, all cMSC stained positive for CD73 (fig. 1 Cv), CD90 (fig. 1 Cvi) and CD105 

(fig. 1 Cvii). Myofibroblast marker α-SMA was present in individual cells at P1 (fig. 1 Bviii) 

and P4 (fig. 1 Cviii) but was not present in the healthy corneal stroma (fig. 1Aviii). 

RT-qPCR was performed to explore differences in mRNA levels of keratocytes within the 

corneal stroma, at P1 and at P4 (figure 2). Expression of ALDH3A1 (fig. 2A), CD34 (fig. 2B) 

and KERA (fig. 2C) mRNA levels were significantly decreased in P1 and P4 cells compared to 

the cornea, but there were no significant differences between P1 and P4. VIM (fig. 2D) and 
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NT5E (fig. 2E) were significantly upregulated in extracted cells at both P1 and P4, but there 

was no significant difference between P1 and P4. THY1 (fig. 2F) and ENG (fig. 2G) were 

significantly upregulated in P1 and P4 compared to cornea and there was also significant 

difference between P1 and P4. In contrast to the immunostaining, ACTA2 (fig. 2H) mRNA 

levels were significantly lower in extracted cells than the cornea. 

  

3.2 Supplemented keratocyte differentiation media support cell viability 

Proliferation of cMSC (at P4) was monitored in six differentiation media and a non-

differentiated control (figure 3). In the control (fig. 3A), cMSC proliferated rapidly up to day 

10, but as cells became confluent, proliferation decreased and cell number was maintained. 

In serum-free medium (fig. 3B), viability did not increase significantly above that at day 3. By 

day 21, there were significantly less viable cells than there had been at day 3, indicating a 

small amount of cell death. cMSC in all other keratocyte media showed some level of 

proliferation, with significantly higher cell viability at day 14 than at day 3. However, 

metabolic activity decreased again at day 21, with the exception of cells differentiated in a 

combination of FGF-2, TGF-β3 and RA (fig. 3G) which had significantly increased cell viability 

on day 21. 

 

3.3 Keratocyte differentiation media results in different cell morphologies 

Morphology of cMSC in differentiation media was assessed by phalloidin staining of actin 

filaments at day 21 of differentiation. cMSC in control media (fig. 4A) were typically 

fibroblastic, long and spindle shaped. cMSC in serum-free medium (fig. 4B) were much more 
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sparse than in any other media, and were a mix of small cells with a dendritic morphology 

and larger fibroblastic cells. Both cMSC in FGF-2 (fig. 4C) and FGF-2 with TGF-β3 (fig. 4F) had 

different morphology to the other media. The cells were small and rounded with processes 

extending out from the cell body. cMSC in RA (fig. 4D) were mostly fibroblastic in 

morphology, but there were a few cells within the population of a dendritic morphology. 

cMSC in TGF-β3 (fig. 4E) and FGF-2, TGF-β3 and RA (fig. 4G) had similar morphology to the 

control but were more sparse, with large fibroblastic cells. 

 

3.4 Keratocyte differentiation media stimulates expression of keratocyte markers but 

does not reduce MSC markers 

Immunocytochemistry was performed on cMSC in keratocyte differentiation medium and a 

non-differentiated control at day 21 of culture (figure 5). In control medium, there were 

background levels of ALDH3A1 (fig. 5 Ai) but no staining for CD34 (fig. 5 Aii) or keratocan 

(fig. 5 Aiii). In the differentiation media, (fig 5 B-G) all cMSC stained for the keratocyte 

markers ALDH3A1, CD34 and keratocan, regardless of supplementation. Vimentin (fig. 5 iv), 

CD73 (fig. 5 v), CD90 (fig. 5 vi) and CD105 (fig. 5 vii) were present in all cells in all media, 

indicating that differentiation does not lead to a reduction in MSC markers over a 21 day 

time period. Myofibroblast marker α-SMA stained most prominently in control media (fig. 5 

Aviii), with the majority of cell displaying fibres. α-SMA fibres were also seen in serum-free 

medium (fig. 5 Bviii), TGF-β3 supplemented (fig. 5 Dviii), RA supplemented (fig. 5 Eviii), and 

cells supplemented with FGF-2, TGF-β3 and RA combined (fig. 5 Gviii). 
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RT-qPCR was performed to compare mRNA levels due to differentiation (figure 6). 

Significances are shown compared to control on the figure, statistical comparisons of all 

other media can be found in supplementary table 1.  There was significant upregulation of 

ALDH3A1 (fig. 6A), CD34 (fig. 6B), KERA (fig. 6C), and VIM (fig. 6D) in all differentiation 

media, compared to control. For ALDH3A1 and VIM, there was also significantly higher 

expression in the serum-free medium compared to all other media. This was also true for 

CD34, with the exception of RA. There was also significant upregulation of THY1 (fig. 6F), 

particularly in RA medium, and ENG (fig. 6G) in the differentiated samples.  NT5E (fig. 6E) 

mRNA levels were not significantly different in serum-free and TGF-β3 containing media 

compared to control. In media containing FGF-2 and FGF-2 + TGF-β3, there was significant 

upregulation of NT5E, however, in media containing RA and FGF-2 + TGFβ3 + RA, there was 

significant downregulation compared to all other media. ACTA2 was significantly 

upregulated in TGF-β3, RA and FGF-2+TGF-β3+RA media. 

 

3.5 Inclusion of FGF-2 and TGF-β3 in the differentiation media increases production of 

ECM 

Immunocytochemistry for collagen-I (fig. 7A) and lumican (fig. 7B) was performed at day 21 

of differentiation to assess ECM deposition. There were low levels of staining for both in the 

non-differentiated controls (fig. 7 Ai and Bi, respectively). Staining for collagen-I and lumican 

was increased in serum-free media, but was intracellular and not deposited by the cells (fig. 

7 Aii and Bii, respectively). There was subjectively increased staining for collagen-I in FGF-2 

(fig. 7 Aiii), TGF-β3 (fig. 7 Aiv), FGF-2 + TGF-β3 (fig. 7 Avi) and FGF-2+TGF-β3+RA (fig. 7 Avii). 

Although there was deposition of collagen-I in RA containing media (fig. 7 Av), staining did 
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not appear as dense. Lumican stained strongly in all FGF-2 containing media (fig. 7 Biii; v and 

vii), but did not appear to be as brightly stained in TGF-β3 and RA differentiation media. RT-

qPCR for COL1A1 (fig. 7C) and LUM (fig. 7D) indicated that both genes were significantly 

upregulated in all differentiation media, compared to control. Significances are shown 

compared to control on the figure, statistical comparisons of all other media can be found in 

supplementary table 1. Serum-free media showed significantly higher upregulation of 

COL1A1 than all other media, and significantly higher LUM than all meida except TGF-β3. 

Collagen was released into the culture media during differentiation (fig. 7 Ei) and deposited 

in the cell monolayer (fig. 7 Eii). Significances are shown compared to control on the figure, 

statistical comparisons of all other media can be found in supplementary table 2.  

Combining media release and deposition (Fig. 7Eiii) revealed that collagen was produced at 

significantly higher rates compared to the control in all media containing either FGF-2 

and/or TGF-β3, and the addition of RA had little effect on collagen production. Media that 

contained all three supplements was the only media to lead to significantly higher 

production of total collagen than all others. 

Quantification of sGAG released into the culture medium (fig. 7 Fi) and deposited in the cell 

monolayer (fig. 7 Fii) was performed by DMMB assay. As sGAG are the polysaccharide units 

that are present in proteoglycans such as keratocan or lumican, this measurement estimates 

quantities of corneal ECM being produced. Significances are shown compared to control on 

the figure, statistical comparisons of all other media can be found in supplementary table 3. 

Release of sGAG into the culture medium was significantly higher than the control in all 

media except for serum-free. However, deposition of sGAG in the cell monolayer was only 

significantly higher in FGF-2 and TGF-β3 media. When media release and deposition of sGAG 
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were combined (fig. 7 Fiii), all media other than serum-free had significantly higher 

production than the control, however, media containing TGF-β3 had the highest sGAG 

production. Statistical differences in the total production of sGAG between media other 

than control and serum-free were all found to be non-significant. 

4. Discussion 

As the potential for corneal regenerative strategies is recognised, and research gathers 

momentum, it is essential for a greater understanding of stem cell differentiation to the 

keratocyte phenotype. Keratocytes are integral in producing and maintaining the complex 

ECM of the corneal stroma and essential in restoring and maintaining transparency. As it is 

difficult to maintain keratocyte phenotype whilst achieving proliferation in vitro, it would 

require a large amount of corneal tissue to extract enough keratocytes to use directly in the 

production of a cell therapy or tissue-engineered corneal stroma replacement. However, if 

keratocytes could be derived from cMSC populations that contain fibroblasts and 

myofibroblasts, this population could be cultured to much higher numbers and then the 

keratocyte phenotype restored during production of the cell therapy or tissue-engineered 

product. This study has addressed the feasibility of this process, identifying some of the 

issues in restoring a keratocyte phenotype for clinical use, through a comprehensive 

investigation of the phenotypic changes that occur to keratocytes upon in vitro culture, and 

comparison of media supplements for the reversion of this phenotypic change. 

It has been well-documented that CSC extracted from the limbal region of the cornea can 

derive a cMSC phenotype (Choong et al. 2007, Polisetty et al. 2008, Branch et al. 2012), that 

conforms to ISCT criteria (Dominici et al. 2006) and have a multipotent potential, 

differentiating into lineages including adipogenic, osteogenic, chondrogenic and  neurogenic 
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(Polisetty et al. 2008, Branch et al. 2012, Li et al. 2012, Greene et al. 2014). However, it has 

never been conclusively shown whether this MSC phenotype is present within the in vivo 

cornea, or is a product of in vitro culture. This study shows that, under these conditions, the 

extracted keratocytes become cMSC after several passages, but there is no evidence that 

the in vivo limbal stroma contains cells with the MSC phenotype. This is due primarily to a 

lack of visible expression of CD73, CD90 and CD105, and high expression of CD34. The 

absence of CD90 was to be expected, as it is rarely present in healthy corneas as it is a 

marker of activated keratocytes (Pei et al. 2004). Despite its use as a marker of keratocytes, 

CD34 is more commonly associated with haematopoietic cells, and it is for this reason it is 

considered to be an indicator that a cell is not an MSC, despite increasing evidence that 

CD34 is associated with a number of progenitor cell types, including bone marrow MSC 

(Sidney et al. 2014). In this study, we clearly showed that as the MSC phenotype begins to 

appear in vitro; the keratocyte phenotype proportionally disappears, with expression of the 

proteins and genes for ALDH3A1, CD34 and keratocan decreasing with culture, and CD73, 

CD90 and CD105 increasing. 

Another well-documented phenomenon of in vitro cultured keratocytes is the appearance 

of a contractile myofibroblast phenotype (Masur et al. 1996, Pei et al. 2004), predominantly 

due to the serum concentration of the culture medium and more specifically the presence 

of TGF-β1 (Jester et al. 1996). In this study, distinctive α-SMA fibres were seen in cultured 

cMSC from P1. However, mRNA levels for ACTA2, the gene for α-SMA, were downregulated 

after culture, indicating some discrepancies between protein and gene expression. 

Various media supplements have been used to differentiate cultured CSC back to a 

keratocyte phenotype. In most cases, the base media for differentiation is serum-free, to 
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induce the quiescence representative of a keratocyte population. In studies involving animal 

keratocytes, serum-free media alone can be sufficient in restoring the keratocyte phenotype 

(Berryhill et al. 2002, He and Bazan 2008, Chen et al. 2009). In this study, serum-free media 

(with ITS and ascorbate added) did restore keratocyte markers, and gene expression of 

these markers was actually higher in serum-free, than any of the supplemented media. 

However, serum-free media without supplementation did not support cell viability, with 

decreased cell numbers by day 21 of differentiation and was also not effective for the 

production of corneal ECM as the supplemented media. Addition of supplements FGF-2, 

TGF-β3 and RA, particularly in combination allowed some proliferation of the cMSC to occur 

and cell numbers were increased by the 21-day endpoint. 

When looking at protein and gene expression of typical keratocyte (CD34, ALDH3A1, 

keratocan) and MSC (CD73, CD90, CD105, vimentin) markers of the differentiated cells, 

there was little difference between the different supplementations and serum-free media. 

All media showed significant upregulation of ALDH3A1, CD34 and KERA compared to the 

non-differentiated control, with serum-free media showing the highest expression. In 

contrast to expectations, all differentiation media also showed significant upregulation of 

VIM, THY1 and ENG. This was also reflected in the protein staining where ALDH3A1, CD34 

and keratocan were clearly stained in the differentiated cells but not in the control. No 

differentiation media led to a decrease in the levels of staining of vimentin, CD73, CD90 or 

CD105. This suggests that there was only partial differentiation of the cells to the keratocyte 

phenotype, in all media. In many instances, in vitro keratocyte differentiation has only been 

demonstrated by increased expression of keratocyte markers, but has not been confirmed 

by a simultaneous decrease in fibroblast markers such as CD90 and vimentin (Berryhill et al. 
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2002, Park et al. 2012, Gouveia and Connon 2013, Byun et al. 2014, Foster et al. 2015). The 

only differences seen between the differentiation media in this study were a 

downregulation of NT5E in media containing RA and differences in α-SMA expression; α-

SMA fibre staining was not seen in cultures supplemented with FGF-2. To achieve full 

keratocyte differentiation it may be that cells require longer in the differentiation media 

containing the three supplements, or require additional three-dimensional culture substrate 

such as a hydrogel or electrospun scaffold (Kim et al. 2010, Karamichos et al. 2014). 

More differences were seen between the differentiation media when assessing production 

of ECM. Levels of COL1A1 and LUM were significantly upregulated in all differentiation 

media, but there were no significant differences between them. However, 

immunofluorescent staining of collagen-I and lumican appeared to show decreased levels in 

serum-free and RA, compared to the other differentiation media. This was further 

corroborated by quantitative assessment of collagen and sGAG production. Production of 

ECM was significantly increased in media that contained FGF-2 and/or TGF-β3, particularly 

in combination. Literature has stated that RA promotes expression of ECM proteins and 

proteoglycans, by reducing the expression of MMPs (Gouveia and Connon 2013). However, 

our study found that RA on its own was not sufficient to stimulate ECM proteins and in 

combination with FGF-2 and TGF-β3 did not provide a more synergistic effect. For this 

reason, we would state that RA does not appear to be a necessary supplement when the 

other growth factors are present. FGF-2 and TGF-β3 have been reported to act 

synergistically in other studies to allow corneal stromal stem cells to produce an abundant 

organized, collagenous matrix on aligned synthetic substrates (Wu et al. 2013), to stimulate 
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collagen production by bone marrow-derived MSC (Perrier et al. 2011) and to support 

proliferation of CSC (Kay et al. 1998).  

From a cell therapy viewpoint, it may be interesting as to whether a differentiation medium 

supplemented with FGF-2 and TGF-β3 , such as in this study could be used to derive 

keratocytes from MSC populations extracted from bone marrow or adipose tissue, or 

whether this is a property only cMSC possess. There is some evidence that MSCs extracted 

from non-corneal tissues can differentiate into keratocytes, as described in this review 

(Harkin et al. 2015); both in vivo (Arnalich-Montiel et al. 2008, Liu et al. 2010, Liu et al. 2012) 

and in vitro (Du et al. 2010, Zhang et al. 2013). As these MSC types are currently more 

readily available than MSC from the cornea, there would be advantages in using them to 

derive large numbers of keratocytes for clinical purposes. 

In conclusion, the differentiation of stromal cells back to a keratocyte phenotype is more 

complicated than culturing in serum-free media, even with supplementation. Although, 

expression of keratocyte markers ALDH, CD34, collagen-I and specific proteoglycans may be 

shown to increase, a visible reduction of fibroblast, MSC and myofibroblast markers is also 

required, and was not shown in this study. However, with increased differentiation time and 

alternative substrates, a serum-free media containing FGF-2 and TGF-β3 shows more 

promise than serum-free media as a method of differentiating cultured cMSC back to a 

keratocyte phenotype. 
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Figure Legends 

 

Figure 1. Change in protein expression upon transition of cells from keratocyte to MSC 

phenotype.  Fluorescent immunostaining was performed on (A) peripheral corneal stroma 
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sections, (B) central corneal stroma sections, (C) passage 1 cMSC and (D) passage 4 cMSC for 

(i) ALDH3A1, (ii) CD34, (iii) Keratocan, (iv) Vimentin, (v) CD73, (vi) CD90, (vii) CD105 and (viii) 

α-SMA. Extraction and passage caused a reduction in expression of keratocyte markers and 

increased expression of MSC markers. Representative images shown. Scale bar = 100 μm. 
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Figure 2. Change in mRNA levels upon transition of cells from keratocyte to MSC 

phenotype.  RT-qPCR was performed on cornea, passage 1 (P1) cMSC and passage 4 (P4) 

cMSC for genes (A)ALDH3A1, (B) CD34, (C) KERA, (iv) VIM, (v) NT5E, (vi) THY1, (vii) ENG and 

(viii) ACTA2. Expression of each target gene was normalised to GAPDH and represented 

relative to mRNA levels in cornea. Data shown on log10 scale and represented by mean±SEM 

of three experiments (n=3) each with 2 replicates. Statistical significance vs. cornea shown 

by *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. Statistical significance of P1  vs P4 shown 

by # p≤0.05, ##p≤0.01. 
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Figure 3. Effect of keratocyte differentiation media on cMSC proliferation and viability. 

Presto Blue proliferation assay was performed on day 3, 6, 10, 14, 18 and 21 of 

differentiation for cells in (A) non-differentiated control medium; (B) serum-free 

differentiation medium; (C) medium containing 10 ng/mL FGF-2; (D) medium containing 0.1 

ng/mL TGF-β3; (E) medium containing 10 μM retinoic acid (RA); (F) medium containing 10 

ng/mL FGF-2 and 0.1 ng/mL TGF-β3; and (G) medium containing 10 ng/mL FGF-2, 0.1 ng/mL 

TGF-β3 and 10 μM RA. Each timepoint is represented relative to the reading at day 3 for the 

control media. Data represented by mean±SEM of 5 experiments (n=5), each with 3 

replicates. Statistical significance vs day 3 of same medium represented by *p≤0.05, 

**p≤0.01, ***p≤0.001, ****p≤0.0001. 
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Figure 4. Changes in actin cytoskeleton due to keratocyte differentiation medium. 

Phalloidin was used to stain the actin filaments of cells differentiated in (A) non-

differentiated control medium; (B) serum-free differentiation medium; (C) medium 

containing 10 ng/mL FGF-2; (D) medium containing 0.1 ng/mL TGF-β3; (E) medium 

containing 10 μM retinoic acid (RA); (F) medium containing 10 ng/mL FGF-2 and 0.1 ng/mL 

TGF-β3; and (G) medium containing 10 ng/mL FGF-2, 0.1 ng/mL TGF-β3 and 10 μM RA. 

Representative images shown. Scale bar = 100 μm. 
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Figure 5. Effect of keratocyte differentiation media on cMSC morphology and protein 

expression. Fluorescent immunostaining was performed on cMSC samples after 21 days in 

(A) non-differentiated control medium; (B) serum-free differentiation medium; (C) medium 

containing 10 ng/mL FGF-2; (D) medium containing 0.1 ng/mL TGF-β3; (E) medium 

containing 10 μM retinoic acid (RA); (F) medium containing 10 ng/mL FGF-2 and 0.1 ng/mL 

TGF-β3; and (G) medium containing 10 ng/mL FGF-2, 0.1 ng/mL TGF-β3 and 10 μM RA. 

Staining was performed for for (i) ALDH3A1, (ii) CD34, (iii) Keratocan, (iv) Vimentin, (v) CD73, 

(vi) CD90, (vii) CD105 and (viii) α-SMA. Representative images shown. Scale bar = 100 μm. 
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Figure 6. Change in mRNA levels upon culture in keratocyte differentiation medium.  RT-

qPCR was performed on cMSC cultured in control or differentiation media for 21 days. 

Genes tested were (A)ALDH3A1, (B) CD34, (C) KERA, (iv) VIM, (v) NT5E, (vi) THY1, (vii) ENG 

and (viii) ACTA2. Expression of each target gene was normalised to GAPDH and represented 

relative to mRNA levels in non-differentiated control. Data shown on log10 scale and 

represented by mean±SEM of three experiments (n=3) each with 2 replicates. Statistical 

significance vs. control shown by *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.  
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Figure 7. Production of ECM in different keratocyte differentiation media. 

Immunocytochemistry was performed for deposition of (A) Collagen-I and (B) Lumican in 

samples cultured for 21 days in (i) non-differentiated control medium; (ii) serum-free 

differentiation medium; (iii) medium containing 10 ng/mL FGF-2; (iv) medium containing 0.1 

ng/mL TGF-β3; (v) medium containing 10 μM retinoic acid (RA); (vi) medium containing 10 

ng/mL FGF-2 and 0.1 ng/mL TGF-β3; and (vii) medium containing 10 ng/mL FGF-2, 0.1 ng/mL 

TGF-β3 and 10 μM RA. Representative images shown. Scale bar = 100 μm. RT-qPCR was 

performed to assess mRNA levels of (C) COL1A1 and (D) LUM. Expression of each target 

gene was normalised to GAPDH and represented relative to mRNA levels in non-

differentiated control. Data shown on log10 scale and represented by mean±SEM of three 

experiments (n=3) each with 2 replicates. Statistical significance vs. control shown by 

**p≤0.01, ****p≤0.0001. (E) Hydroxyproline assays were performed to assess collagen 
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production: (i) collagen released into the culture medium, (ii) collagen deposited in the cell 

monolayer, (iii) collagen in media and monolayer combined.  Data represented as mean±SD 

of 3 independent samples (n=3). Statistical significance vs. control shown by ****p≤0.0001.  

(F) DMMB assay was performed to assess sGAG production: (i) sGAG released into the 

culture medium, (ii) sGAG deposited in the cell monolayer, (iii) sGAG in media and 

monolayer combined. Data represented as mean±SD of 3 independent samples (n=3). 

Statistical significance vs. control shown by **p≤0.01, ***p≤0.001, ****p≤0.0001. 
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Tables 

Table 1. Components of the various keratocyte differentiation media 

Media Components 

Serum-Free DMEM/F12 with 50 μg/mL ascorbate 2-phosphate; 10 μg/mL human 

insulin, 5.5 μg/mL human transferrin, 6.7 ng/mL sodium selenite (Life 

Technologies, ITS); 1% non-essential amino acids (Life Technologies); 

antibiotics  

FGF-2 Serum-free with 10 ng/mL FGF-2 (Life Technologies) 

TGF-β3 Serum-free with 0.1 ng/mL TGF-β3 (Life Technologies) 

RA Serum-free with 10 µM retinoic acid 

FGF-2+TGF-β3 Serum-free with 10 ng/mL FGF-2 and 0.1 ng/mL TGF-β3 

FGF-2+TGF-β3+RA Serum-free with 10 ng/mL FGF-2, 0.1 ng/mL TGF-β3 and 10 µM retinoic 

acid. 
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Table 2. Antibody information 

Antigen Clone  Source  (Catalogue #) Host Conjugate 

ALDH3A1 Polyclonal Abcam (ab76976) Rabbit - 

CD34 QBEND10 Abcam (Ab8536) Mouse - 

Keratocan Polyclonal Santa Cruz Biotechnology (sc-33243) Goat - 

Vimentin V9 Vector Labs (VPV684) Mouse - 

CD73 Polyclonal Thermo Scientific Pierce (PA5-

11871) 

Rabbit - 

CD90 F15-42-1 Thermo Scientific Pierce (MA5-

16671) 

Mouse - 

CD105 Polyclonal R&D Systems (AF1097) Goat - 

α-SMA 1A4 Abcam (ab7817) Mouse - 

Collagen-I Polyclonal Abcam (ab34710) Mouse - 

Lumican Polyclonal R&D Systems (AF2846) Goat - 

Rabbit IgG Polyclonal Life Technologies (A-21206) Donkey Alexa 

Fluor-488 

Mouse IgG Polyclonal Life Technologies (A-21202) Donkey Alexa 

Fluor-488 

Goat IgG Polyclonal Life Technologies (A-11055) Donkey Alexa 

Fluor-488 

Mouse IgG Polyclonal  Life Technologies (A-21203) Donkey Alexa 

Fluor-594 

Rabbit IgG Polyclonal  Life Technologies (A-11056) Donkey Alexa 

Fluor-546 

Goat IgG Polyclonal Life Technologies (A-10040) Donkey Alexa 

Fluor-546 
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Table 3. Taqman® Probe information 

Gene Name Protein Assay ID 

ALDH3A1 ALDH3A1 Hs00964880_m1 

CD34 CD34 Hs00990732_m1 

KERA Keratocan Hs00559942_m1 

VIM Vimentin Hs00185584_m1 

NT5E CD73 Hs01573922_m1 

THY1 CD90 Hs00174816_m1 

ENG CD105 Hs00923996_m1 

COL1A1 Collagen-I Hs00164004_m1 

LUM Lumican Hs00158940_m1 

GAPDH GAPDH Hs99999905_m1 

 


