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Abstract

Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of
neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte
developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify
conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line
WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface
NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week.
Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate.
Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate
expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free
of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including
BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1,
B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was
upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with
keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to
differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for
development of treatment of corneal stromal opacities.
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Introduction

The cornea is an optically clear, multi-laminar tissue that

functions to transmit and focus light on the retina. Connective

tissue of the corneal stroma constitutes 95% of the cornea’s

thickness and strength [1]. The transparency of the cornea to light

depends on the unique molecular composition and organization of

the extracellular matrix of the stroma, a product of keratocytes,

specialized neural crest (NC) -derived mesenchymal cells. The

stroma is composed of collagen fibrils stretching from limbus to

limbus in parallel lamellar sheets, forming an organized, regularly

spaced lattice arrangement that transmits visible light to the

interior of the eye. Loss of collagen fibril organization, as occurs

after trauma or infection, results in scarring and decreased

transparency, sometimes leading to permanent blindness.

Currently, the only treatment for many visually-disabling

corneal opacities is transplantation of corneal allografts. This

therapy is highly successful, but corneal transplants are limited due

to a worldwide shortage and decreasing availability of donor

corneal tissue. A potential approach to address these issues is

development of material suitable for stromal replacement.

Currently, several models of tissue-engineered collagen-based

corneal substitutes are being developed in which scaffolds are

made for human keratocytes to populate [2,3,4]. Keratocytes,

however, lose the ability to secrete and organize stromal

connective tissue after expansion in vitro [5]. Therefore, there is

a need for a renewable source of keratocytes, able to integrate into

the scaffold and produce stromal connective tissue. Stem cells offer

such a potential source for construction of biosynthetic corneal

tissue [6]. Stem cells from adult tissues exhibit a limited repertoire

of differentiation and typically a limited replicative lifespan

in vitro, whereas stem cells derived from early embryos appear

to have an unlimited lifespan and potential for differentiation to

any somatic cell type. Pluripotent stem cells, therefore, offer

a consistent and abundant cell source for development of

bioengineering models.

Human embryonic stem (hES) cells readily differentiate into

cells of neural lineage when co-cultured with the mouse fibroblast

line PA6 [7]. Recently it has been shown that, during the three-

week course of neural differentiation, hES cells transiently express

a NC phenotype [8,9,10]. In the first week of co-culture the hES

cells express low-affinity nerve growth factor receptor, NGFR (also
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known as CD271 and p75NTR) [8]. Expression of this protein is

observed on migrating neural crest populations during develop-

ment and is also detected on adult stem cells with NC properties

[11,12,13]. Separation of NGFR-expressing cells before full neural

differentiation isolated a population of cells with genetic,

phenotypic and functional characteristics of embryonic NC cells

[8].

Corneal stroma and endothelium are both tissues of NC lineage.

We therefore hypothesized that differentiation of hES cells to

stromal keratocytes could be effected using hES cells that have

adopted a NC phenotype. In the current study we captured hES in

the NC phase of their neural differentiation and induced

keratocyte phenotype in pellet culture after a week-long expansion

in monolayer culture. We found this sequence of culture

environments to markedly upregulate expression of mRNAs

characteristic of differentiated keratocytes. Furthermore the

pellet-cultured cells secreted corneal-specific keratan sulfate pro-

teoglycan.

Materials and Methods

hES Cell and PA6 Co-Culture
The murine stromal PA6 cell line (Riken Bioresource Center

Cell Bank, Japan) was cultured on 0.1% gelatin-coated plates in

90% MEM-alpha (Life Technologies, Carlsbad, CA) containing

10% fetal bovine serum (FBS). The hES cell line WA01 (H1) was

obtained from the University of Pittsburgh Stem Cell Core under

license from WiCell (Madison, WI), and its use was approved by

the University of Pittsburgh Human Stem Cell Research Over-

sight Committee. The hES cells were grown on Matrigel (BD

Biosciences, Franklin Lakes, NJ) in mTeSR-1 basal medium

(Stemcell Technologies, Canada) and maintained as described in

previous protocols [14].

Differentiation of the hES cells into NC cells during PA6 co-

culture was carried out as previously described [7] with minor

modifications. Overgrown and differentiated hES colonies were

identified and individually scraped off and removed from culture

plates with a glass pipette. Remaining undifferentiated hES

colonies were manually collected and sectioned using a StemPro

EZPassage tool (Life Technologies). Remaining segmented colo-

nies were mechanically dislodged and collected in 50 mL conical

tubes, then washed and resuspended in Induction Medium (90%

BHK21-medium/Glasgow modified Eagle’s medium, 2 mM

glutamine, 10% knockout serum replacement, 1 mM pyruvate,

0.1 mM nonessential amino acid solution, 0.1 mM b-mercap-

toethanol, 100 IU/mL penicillin, 100 mg/mL streptomycin) (all

from Life Technologies) [8]. The hES colonies suspended in

medium were added in a drop-wise fashion to 95% confluent PA6-

cultures. The density of plating was approximately 9,000 colonies

per 10 cm plate. The co-cultured plate was incubated at 37uC for

6 days without media changes.

Immunostaining
Immunostaining was carried out on 8 mm cryostat sections of

donor human corneas fixed in 3.2% paraformaldehyde overnight.

Nonspecific binding was blocked with 10% heat-inactivated goat

serum in phosphate buffered saline (PBS). Sections were incubated

2 hr at room temperature with 1 mg/ml primary antibodies

against NGFR (Clone ME20.4, Biolegend, San Diego, CA) in 1%

bovine serum albumin. After three PBS washes, anti-mouse Alexa-

546 secondary antibodies and nuclear dye DAPI were added and

incubated for 2 hr at ambient temperature. Samples were imaged

using a confocal microscope (Olympus) with a 206 oil objective.

Cell Isolation
Human keratocytes were isolated from central stroma of fresh

human donor corneas (,48 hr from TOD) as previously

described [15]. Briefly, the central cornea was excised, rinsed

and incubated in 2.4 U/ml Dispase II (Roche Diagnostics,

Pleasanton, CA) overnight at 4uC. Epithelial and endothelial

cells were removed by dissection and debridement, and the

stroma was minced into 2-mm cubes. Stroma was digested up

to 3 hours at 37uC in Dulbecco’s modified Eagle’s medium

(DMEM) containing 1 mg/ml collagenase type L (Sigma-

Aldrich) and 0.2 mg/ml testicular hyaluronidase (Sigma-Al-

drich). Cells were harvested by centrifugation and immediately

lysed for RNA as described below.

Quantitative Reverse Transcription-polymerase Chain
Reaction (qPCR)
hES cell samples were collected at days 2, 4, 6, and 8 of PA6 co-

culture and lysed in 0.35 ml RLT buffer for RNA isolation using

the RNeasy mini kit (Qiagen, Valencia, CA). The RNA was

treated with DNase I and concentrated by ethanol precipitation.

First strand cDNA was prepared from 400 ng RNA by reverse

transcription using Super Script First Strand Synthesis System for

RT-PCR (Life Technologies) as described [16]. Quantitative RT-

PCR (qPCR) was performed using SYBR Green reagents (Fisher

Scientific Inc.) with primers as shown in Table 1 or with previously

reported primers for adult human corneal stem cells and

keratocytes [15,17]. Sequences of primers for the human NC

genes were compared to their mouse homologues in the NCBI

mouse RefSeq mRNA library with BLAST (http://blast.ncbi.nlm.

nih.gov/) to rule out amplification of mouse cDNA by these

primers. qPCR with these primers on cDNA from PA6 cells

confirmed their non-reactivity with murine RNA. Amplification

was 40 cycles of 15 sec at 95uC and 1 min at 60uC after initial

incubation at 95uC for 10 min. Total reaction volume was 20 mL,
including Maxima SYBR Green qPCR Master Mix (containing

Maxima Hot Start Tac DNA polymerase, ROX, MgCl2, and

nucleotides, Fermentas, Fisher Scientific) with cDNA transcribed

from 20 ng of RNA and 0.2 mM forward and reverse primers. The

StepOne Real-Time PCR System (Applied Biosystems) was used

to generate a dissociation curve for each reaction. Mean threshold

cycle number (Ct) of triplicate reactions was determined by

StepOne Software v2.2.2 and compared to the mean Ct value for

18S for the same cDNA and expressed as a power of 2 to calculate

relative cDNA abundance.

Isolation of NGFR+ Cells
On day 7 of PA6 co-culture, the hES colonies were dislodged

with Accutase (Life Technologies) and triturated by pipetting into

a single-cell suspension. After rinsing twice, the cells were filtered

through a 70 mm cell strainer to remove any clumps and counted.

The cells were washed twice in PBS containing 0.5% bovine

serum albumin and ethylene-diamine-tetraacetic acid, 0.1 mM,

then resuspended in 0.1 mL of the same buffer. After adding Fc

blocking reagent (Miltenyi Biotec, Auburn, CA), the cells were

fluorescently labeled by incubating with APC-labeled anti-NGFR

antibody, washed, and incubated with magnetic beads covalently

linked to anti-APC antibodies (Miltenyi Biotec). The MACS Cell

Separation system (Miltenyi Biotec) was then used to separate

NGFR+ magnetically labeled cells according to the manufac-

turer’s instructions. Flow-through and Bound cell populations

were collected from the MACS columns and analyzed as to NGFR

by flow cytometry and for NC gene expression by qPCR. For flow

cytometry, 105 cells in 0.1 ml PBS were incubated with 2 mg APC-
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PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e56831



labeled antibody to NGFR (Miltenyi Biotec) or with APC-labeled

nonspecific isotype control antibody along with Fixable Violet

Live/Dead stain (Life Technologies) for 30 min on ice. Cells were

rinsed by centrifugation and then fixed in 2% paraformaldehyde

in PBS. Staining was determined by flow cytometry on a BD

Biosciences FACS Aria III flow cytometer.

Cell Expansion and Pellet Culture
NGFR+(Bound) cells were cultured as monolayers in 10 cm

tissue culture dishes coated with FNC (AthenaES, Baltimore,

MD) in MEM-alpha with 10% FBS or alternately on plates

coated with poly-L-ornithine/laminin/fibronectin [9] in N2

Medium [DME/F12 medium (Sigma) with N2 supplement

(Life Technologies), 10 ng/ml FGF2 (Sigma) and 10 ng/ml

EGF (Sigma)]. Because of the presence of abundant PA6 cells,

flow-through cells were not further cultured. After 7 days, the

cultured Bound cells were collected for qPCR analysis and also

transferred to pellet culture to induce keratocyte-differentiation

[17]. Briefly, 1.86105 cells were collected in 15-mL conical

tubes and centrifuged at 1500 rpm for 5 minutes to form

pellets. The pellets were cultured 2% FBS in DME-F12

medium and after 2 days transferred to keratocyte differentia-

tion medium (KDM): Advanced DMEM with 10 ng/mL FGF2,

and 0.1 mM ascorbic acid-2-phosphate [17]. Although cells in

pellets maintained viability based on staining with Calcein AM,

the pellets were difficult to disperse and were not passaged.

For protein expression analysis, NGFR+ cells were cultured for

two weeks as pellets in DMEM/F-12, with 1 mM ascorbate-2-

phosphate, ITS (Gibco), 0.1 mM non-essential amino acids,

10 ng/mL FGF2, and antibiotics as above. Proteoglycans were

isolated from conditioned media by ion exchange chromatography

as described previously [18], dialyzed, dried, and biotin labeled

using sulfosuccinimidyl-6-(biotinamido) hexanoate (Sulfo-NHS-

LC-Biotin, Fisher Scientific) at 2 mg/ml in 0.1 M NaHCO3,

1 hr at room temperature. Cornea-specific keratan sulfate

proteoglycans were immune precipitated with a polyclonal anti-

body to keratocan [5,18] or a monoclonal antibody to keratan

sulfate, J19 [19], bound to protein G-magnetic beads (Dynabeads,

Life Technologies). Keratan sulfate on half of each sample was

digested with endo-beta-galactosidase [5] (QA-Bio, Palm Desert,

CA) 0.05 U/ml, 2 hr at 37uC. Digested and undigested samples

were separated by electrophoresis on 4%–20% SDS-PAGE gel

and transferred to a PVDF membrane. Membranes were probed

with streptavidin-IR700 dye and imaged on a LiCor Odyssey

Imaging System [20].

Results

Selecting Keratocyte Precursor Cells by NGFR Expression
We and others have shown that the limbal (peripheral) region of

the corneal stroma contains mesenchymal cells with stem cell

properties [6]. These cells have the ability to differentiate to

keratocytes in vitro and in vivo [17,21,22]. Consistent with the

neural crest origin of the stroma, limbal stromal cells express

several proteins characteristic of neural precursor and neural crest

cells including nestin and Six2 [17]. The cell surface low affinity

nerve growth receptor (NGFR) is expressed on migrating

embryonic neural crest cells as well as a number of adult stem

cells, particularly those with neural crest character [12,13,23].

NGFR has also been detected in limbal epithelial and stromal cells

of human cornea [24,25]. In the immunostaining in Fig. 1 we

confirmed the observation that cells in the limbal stroma express

NGFR (Fig. 1A) and found that few or no cells in the central

stroma stained for NGFR (Fig. 1B). Because hES cells exhibit

transient expression of NGFR when induced to differentiate to the

neural lineage [8], we adopted the rationale that isolation of hES

cells expressing NGFR might provide a source of cells with the

potential to differentiate to keratocytes.

Isolation and Characterization of hES-derived NC Cells
When hES cells are co-cultured with mouse embryonic

fibroblast PA6 cells (Fig. 2A) they differentiate to neural cells

[26]. Early in this process the hES cells transiently express a NC

phenotype [8]. We found that expression of several characteristic

NC genes (NGFR, SNAI1, NTRK3, SOX9, and MSX1) was

upregulated after two days of the co-culture (Fig. 3). Consistent

with previous reports, expression of these NC genes plateaued at

days 6–8, after which the cells transitioned into neural cell

phenotypes [2,4,15].

From 6-day induced hES cells, a population of cells expressing

the cell surface NC protein NGFR was selected using magnetic

beads attached to anti-NGFR antibody (Bound Cells). Cells

expressing lower levels of NGFR (Flow Through) were also

collected. Flow cytometry of these populations (Fig. 4) showed that

the affinity procedure enriched for cells with the NGFR cell

surface marker, increasing its abundance 4-fold in the Bound-cell

population compared to starting material. 4.96106 cells were

recovered from a starting population of 7.86107 total (hES+PA6)
cells representing about 6% of the total cells. Viability of the

Bound cells was .95%.

Quantification of NC gene expression in the isolated (Bound)

cell population (Fig. 5) found NGFR expression to be enriched 6-

fold compared to Flow-though cells. Expression of other NC

Table 1. PCR Primer Sequences.

Gene (GenBank mRNA) Forward Primer Reverse Primer

GAPDH (NM_002046) TGTTGCCATCAATGACCCCTT CTCCACGACGTACTCAGCG

NGFR (NM_002507) CCTACGGCTACTACCAGGATG CACACGGTGTTCTGCTTGTC

NTRK3 (NM_001007156) TCCGTCAGGGACACAACTG GCACACTCCATAGAACTTGACA

SOX9 (NM_000346) GCCAGGTGCTCAAAGGCTA TCTCGTTCAGAAGTCTCCAGAG

SNAI1 (NM_005985) AATCGGAAGCCTAACTACAGCG GTCCCAGATGAGCATTGGCA

SLUG (NM_003068) AAGCATTTCAACGCCTCCAAA AGGATCTCTGGTTGTGGTATGAC

MSX1 (NM_002448) CTCCGCAAACACAAGACGAAC CACATGGGCCGTGTAGAGTC

Mouse Tbp1 (NM_013684) AGAACAACAGCCTTCCACCTTATG CAAGTTTACAGCCAAGATTCACGG

doi:10.1371/journal.pone.0056831.t001
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Figure 1. Limbal stroma cells express NGFR protein. Cryosections of cornea from a 34 yr old donor were immunostained with
antibody to NGFR (p75ntr) protein(red) and counterstained with DAPI (blue) to show nuclei. (A) Shows anterior stroma and epithelium at
the limbus. (B) Shows central cornea. Bars in the images indicate 50 mm.
doi:10.1371/journal.pone.0056831.g001

Figure 2. Culture of hES cells. (A) Shows colonies of hES cells cultured on monolayers of PA6 mouse cells to induce neural differentiation. (B)
NGFR+ derived hES cells after 6 days of co-culture were cultured as monolayers in serum-free N2 medium as described in Methods. The cells remain
small and exhibit polygonal morphology. (C) NGFR+ derived hES cells are cultured as a monolayer in serum-containing alpha-MEM medium as
described in Methods. The cells form aligned, spindle-shaped confluent monolayers. (D) Pellet from alpha-MEM cultured cells after 2-week culture.
Cells are small, tightly packed and difficult to disperse. Bars show 200 mm.
doi:10.1371/journal.pone.0056831.g002

Corneal Keratocytes from Embryonic Stem Cells
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marker genes (NTRK3, SNAI1, and SLUG) was significantly

enriched in the NGFR+ cells, but two NC markers (SOX9 and

MSX1) did not appear to be specifically associated with the

NGFR+ cell population.

Because the cells introduced to the MACS columns represented

a mixture of hES and murine PA6 feeder layer cells, it was

important to verify that PA6 cells were not collected in the

NGFR+ fraction. Presence of mRNA for a constitutively expressed

mouse gene TBP1 [27] was compared using qPCR from the

starting cells and the cells after isolation. The expression relative to

the pure PA6 line is shown in Table 2. By this measure, the

recovered NGFR+ cells were found to be .99.99% human,

similar to the pure hES cell cultures. This proportion remained

after expansion and passage of these cells. Therefore, magnetic-

activated cell sorting is an effective way of isolating a NGFR+
population of cells from PA6 co-cultured treated hES cell culture

without contamination from the murine feeder layer.

Keratocyte Differentiation of hES-derived NGFR+ Cell
Population
Adult stem cells isolated from the human corneal stroma exhibit

a phenotype different from differentiated keratocytes, but with

similarities to mesenchymal stem cells from bone marrow

[15,16,17]. These cells can be distinguished from keratocytes by

expression of several stem cell-associated genes, and will differen-

tiate into keratocytes when cultured as substratum-free floating

pellets in serum-free medium containing ascorbic acid-2-phos-

phate and FGF2 [17]. Our initial attempts to maintain the isolated

NGFR+ cells directly in pellet cultures led to cell death, but we

found that expansion of these cells in monolayer culture (as shown

in Fig. 2B and 2C) maintained their viability. In Fig. 6, we

compared isolated NGFR+ cells and the subsequent monolayer

cultures for expression of six genes previously identified as

abundant in human corneal stromal stem cells, (Pax6, Nestin,

Kit, Notch1, Six2, BMI1) [17]. All six genes were expressed in the

NGFR+ cells and in culture, expression was maintained for all but

PAX6 which was decreased by .90% in the cultured cells.

Expansion in serum-free conditions in the presence of EGF, FGF2

and N2 supplement (N2 medium, Fig. 2B) was marginally better at

maintaining stem cell gene expression than culture in 10% fetal

bovine serum in MEM-alpha medium (MEM-FBS, Fig. 2C).

Passage in MEM-FBS reduced the adult stem cell expression even

further (not shown).

Cells from the N2 and MEM-FBS monolayer cultures were

transferred to differentiation medium as pellets (Fig. 2D) for two

weeks and assayed for expression of six genes that are highly

expressed in keratocytes. As shown in Fig. 7, aquaporin-1 (AQP1)

was increased 24-fold, PTGDS 20-fold, B3GNT7 10-fold, and

ALDH3A1 100-fold when compared with the NGFR+ cells. Most

notably, expression of keratocan (KERA), a cornea-specific

proteoglycan present in stromal extracellular matrix, was in-

creased over 10,000-fold.

The most characteristic molecular identifiers of keratocytes are

the keratan sulfate proteoglycans [28]. These are a group of three

proteins, one of which being keratocan, modified by highly

sulfated keratan sulfate glycosaminoglycan chains. Biosynthesis of

corneal keratan sulfate is reported to require two cornea-specific

enzymes, beta3-GnT7 (EC 2.4.1), a glycosyltransferase, and

corneal N-acetylglucosamine 6-sulfotransferase (EC 2.8.2.17)

[29]. Messenger RNA for keratocan (KERA) and for these two

enzymes (B3GNT7, CHST6) are all markedly increased when

adult stem cells differentiate to keratocytes [22], so it seemed

curious that the CHST6 showed little upregulation as hES-derived

cells began expressing keratocan. To better understand this

phenomenon we compared expression of the biosynthetic genes

in hES-derived cells with that of human corneal fibroblasts (HCF),

cells that do not synthesize keratan sulfate, and with freshly

Figure 3. Co-culture with PA6 cells induces upregulation of neural crest gene expression in hES cells. hES cells were co-cultured with
PA6 as described in Methods. RNA was isolated at post-induction days (PID) 2, 4, 6, and 8. Expression of characteristic neural crest (NC) marker genes
was determined by qPCR as described in Methods using human-specific primers (Table 2). Expression levels are calculated relative to untreated hES
cells (hES= 1). Error bars show the standard deviation (S.D.) of triplicate analyses.
doi:10.1371/journal.pone.0056831.g003

Table 2. Expression of mouse mRNA in isolated NGFR+ Cells.

Cells Mouse Tbp1

PA6 (mouse cells) 100

hES (human cells) 0.002

NGFR+ MEM-FBS p0 0.001

NGFR+ MEM-FBS p1 0.0005

NGRF+ N2 p0 0.002

doi:10.1371/journal.pone.0056831.t002
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isolated uncultured human keratocytes [15]. In Fig. 8 we found

that the NGFR+ cells as well as the monolayer cultures all express

high levels of the keratan sulfate sulfotransferase (CHST6) mRNA,

almost equivalent to that in uncultured keratocytes and that the

glycosyltransferase (B3GNT7) mRNA was also highly abundant

compared to the level in corneal fibroblasts. Cells in MEM-FBS

had reduced mRNA abundance for these genes, and when

cultured as pellets, expressed little more than the HCF. Pellet

cultures from cells expanded in N2 medium, however, showed

levels of expression almost identical to those in keratocytes. These

results suggest that CHST6 and B3GNT7 may not be upregulated

in pellet culture because they are already expressed at high levels

by the NGFR+ cells.

Secretion of high molecular weight keratan sulfate proteogly-

cans (KSPG) is a unique phenotypic property of keratocytes and is

required for corneal transparency. High expression of KERA,

B3GNT7 and CHST6 suggests that these specialized proteogly-

cans may be produced by the hES-derived pellet cultures.

Antibodies to keratocan precipitated a high molecular weight

(.100 kDa) heterogeneous protein from pellet-conditioned culture

media (Fig. 9 lane 3). This material was sensitive to digestion by

endo-beta-galactosidase (Fig. 9, lane 4), a keratan sulfate-

degrading enzyme. Presence of the keratan sulfate in this fraction

was confirmed by immune precipitation with anti-keratan sulfate

monoclonal antibody J19 and subsequent digestion with endo-

beta-galactosidase (Fig. 9 Lanes 7 & 8). These results demonstrate

Figure 4. Magnetic-activated cell sorting (MACS) enriches for a population of NGFR+ cells. Single cell suspensions of hES cells after 6 days
of co-culture with PA6 cells were stained with APC-labeled NGFR antibody and analyzed by flow cytometry either before or after separation of NGFR-
positive cells by MACS columns as described in Methods. The blue trace shows the cells stained with non-specific isotype-matched control antibody.
(A) Unfractionated hES+PA6 co-culture. (B) Flow-through, cells not bound to the NGFR MACS column. (C) NGFR+ cells bound and released from
MACS column. The vertical bar marks the population containing ,0.1% non-specific control cells (blue trace). The calculated percentages of the
population (red trace) with positive staining are listed on the graph.
doi:10.1371/journal.pone.0056831.g004

Figure 5. Expression of neural crest gene markers in co-cultured hES cells after magnetic separation. Expression of human NGFR,
NTRK3, SOX9, SNAI1, SLUG and MSX1 was determined in 6-day PA6-cocultured hES cells after separation of NGFR+ (Bound) and NGFR- (Flow through)
by MACS columns as described under Methods. Expression levels were calculated by qPCR relative to hES cells as described in Fig 3. (hES
expression= 1). Error bars show S.D. of triplicate analyses. Asterisks show significantly (p,0.05) increased expression in bound cells as determined by
Student’s t-test.
doi:10.1371/journal.pone.0056831.g005
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secretion in the pellet cultures of molecular components of corneal

stroma that represent unique biosynthetic products of differenti-

ated keratocytes.

Discussion

In this study, we show that hES-derived cells expressing NC

marker genes can be induced to differentiate into cells expressing

keratocyte-specific genes and extracellular matrix components.

Using a well-established co-culture procedure (Fig. 2A) that

induces neuronal differentiation in H1-hES cells, we selected

Figure 6. Expression of adult stem cell markers during monolayer culture. Expression of genes distinguishing adult corneal stem cells from
keratocytes: PAX6, NES, NOTCH1, SIX2, BMI1, and KIT, was examined in the NGFR+ cells and in these cells after culture of the cells one week as
monolayers in MEM-FBS or in N2 media as described in Methods. Gene expression was determined by qPCR relative to NGFR+ cells (set = 1). Error bars
show S.D. of triplicate analyses.
doi:10.1371/journal.pone.0056831.g006

Figure 7. Upregulation of keratocyte-specific gene expression
in pellet cultures. Expression of six genes, previously identified as up-
regulated during keratocyte differentiation, was determined after 2
weeks in pellet cultures derived from either MEM+FBS or N2 monolayer
cultures as described in Methods. Gene expression is calculated relative
to the NGFR+ derived hES cells. Error bars represent S.D. of triplicates.
All genes were significantly (p,0.05) upregulated in pellets compared
to NGFR+ cells except for CHST6. Asterisks show cases in which pellet
culture induced a significant (p,0.05) increase in gene expression
compared to the monolayers cultures.
doi:10.1371/journal.pone.0056831.g007

Figure 8. Expression levels of CHST6 and B3GNT7. Expression of
CHST6 and B3GNT7 in the hES-derived cells was compared relative to
that of human corneal fibroblasts (cells that do not secrete keratan
sulfate) and to freshly isolated stromal keratocytes as described in
Methods. Levels of both genes are comparable in NGFR+ cells to those
in keratocytes but are reduced in the presence of FBS. Cell cultures are
those described in Methods. Error bars show S.D. of triplicate analyses.
doi:10.1371/journal.pone.0056831.g008
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a population of NGFR-expressing cells. As previously reported,

these cells express several characteristic NC marker genes. The

isolated NGFR+ cells were expanded in monolayer cultures during

which time they continued expression of several genes we

previously identified in adult corneal stromal stem cells [17].

The monolayer cells were then incubated as free-floating pellets,

a condition we previously found to induce the keratocyte

phenotype in adult stem cells [17]. In the pellets, expression of

genes that characterize the phenotype of keratocytes was detected,

including KERA, AQP1, ALDH3A1, CHST6, B3GNT7 and

PTGDS. To confirm the phenotype we demonstrated the presence

of keratan sulfate proteoglycans containing both keratocan and

high-molecular weight keratan sulfate in conditioned media from

the pellet cultures. These matrix components are tissue-specific

biosynthetic products of keratocytes present only in corneal

stroma. Previously, keratocan production has been induced in

various multipotent stem cells including adult adipose-derived

stem cells [19], corneal stromal stem cells [17], and bone marrow

mesenchymal stem cells [30]. The current results provide

convincing evidence that stromal extracellular matrix can also

be produced by pluripotent stem cells.

An important aspect of the selection process was the use of

NGFR-expressing cells. Selection of NGFR+ cells allowed iso-

lation of a population with neural crest phenotype, free of mouse

feeder cells. NGFR is a cell surface protein expressed mostly in

migrating NC cells in embryos [11]. Stromal keratocytes are

derived from NC, and adult human cornea was recently reported

to express mRNA for NGFR [31]. Our data in Fig. 1 confirm

previous reports [24,25] that NGFR protein is present on cells in

the limbal stromal cells. Furthermore, this figure adds new

information that little NGFR protein is present in the central

corneal stroma. Our observation that hES-derived cells expressing

NGFR have the potential to become keratocytes is consistent with

the idea that the NGFR+ cells in limbal stroma may be keratocyte

progenitor cells.

Immobilized anti-NGFR antibodies have been previously used

to select NC–like populations from hES cells during neural

differentiation [8]. This approach clearly enriched for a NGFR+
population, but according to Fig. 4 the isolated population

contained a substantial sub-population of NGFR- cells as well. In

the future we may obtain a more potent population by multiple

rounds of selection or by fluorescence-activated cell sorting

(FACS). NC gene expression by these cells suggests the differen-

tiating hES cells were heterogeneous because not all of the NC

gene expression segregated equally with the NGFR+ cells. NGFR

mRNA was enriched by at least 6-fold in the NGFR+ selected cells

but other NC markers much less so. One advantage of the

selection process was that it completely eliminated mouse PA6

feeder cells (Table 2).

We found the NGFR+ population unable to differentiate to

keratocytes directly and introduced an intermediate monolayer

culture of the NGFR+ cells. During this culture, expression of

genes previously found to be expressed in stromal stem cells,

particularly that of PAX6, was reduced. Fetal bovine serum and

expansion of the cells beyond a single passage appeared to be

detrimental to their ultimate ability to differentiate. Although this

culture stage appears to be essential, it seems likely that additional

optimization of conditions of this stage of the process might

ultimately provide a more efficient differentiation.

The ability of adult cells to differentiate to keratocytes appears

to require the presence of soluble ascorbate and culture in an

environment allowing formation of a three-dimensional cell

construct [17,19,22,32,33,34,35]. We originally found that in

serum-free medium containing ascorbate-2-phosphate, insulin,

and FGF2, primary keratocytes form free-floating spheres that

release from the plastic surface, adapting a highly differentiated

phenotype [33]. Spherical aggregates of adult stem cells from

Figure 9. Secretion of corneal keratan sulfate proteoglycans by pellet cultures. Proteoglycans were isolated from culture medium before
(Lanes 1,2,5,6) or after (3,4,7,8) three-week incubation with hES pellets. The proteoglycan fractions were biotin- labeled and immune-precipitated with
antibodies against keratocan (anti-Kera) (lanes 1–4) or keratan sulfate glycosaminoglycan (anti-KS) (lanes 5–8). Half of each sample was digested with
endo-ß-galactosidase (as described under Methods) to hydrolyze keratan sulfate, and samples were separated by SDS-PAGE, transferred to PVDF
membranes and biotinylated proteins detected with avidin-labeled infrared dye as described in Methods. Presence of biotinylated proteins migrating
as a broad, heterogeneous .100 band typical of keratan sulfate proteoglycan (KSPG - bracket on the left) was present in lanes 3 and 7. Sensitivity of
this material to digestion with keratan sulfate-specific glycosidase (lanes 4 and 8) demonstrates presence of keratocan-linked keratan sulfate, a unique
keratocyte biosynthetic product.
doi:10.1371/journal.pone.0056831.g009
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cornea, adipose, and trabecular meshwork tissues formed by

centrifuging the cells into a pellet also express keratocyte genes and

organize a cornea-like extracellular matrix [17,19,32]. Based on

these studies, we believe that expression of an array of keratocyte-

specific genes by hES-derived NGFR+ cells cultured under these

same conditions provides a strong argument that these cells have

become functional keratocytes.

This argument was bolstered by the detection (in Fig. 9) of

corneal keratan sulfate proteoglycans secreted by the pellets. These

data document secretion of a high molecular weight (.100 kDa)

heterogeneous protein that precipitates with antibodies to

keratocan and keratan sulfate and is also degraded by a glycosidase

that breaks down keratan sulfate. Since this molecular form of

proteoglycan is uniquely secreted by keratocytes in vivo, we

believe this experiment provides incontrovertible evidence that the

hES-derived cells have adopted a function previously only

observed in corneal keratocytes.

Production of keratocytes from pluripotent cells has significant

implications for cell-based therapy and tissue engineering for

treatment of corneal diseases. Based on these results, pluripotent

hES cells could represent a consistent, inexhaustible source of

tissue for the surgical treatment of severe corneal opacities.

Furthermore, induced pluripotent stem cells derived from adult

somatic cells could be used in place of human embryonic stem cells

to provide autologous material for bioengineered corneal matrix

or for direct cell-based therapy having a decreased risk of rejection

and in greater supply than donor tissue.

In summary, this study has developed methodology to induce

differentiation of hES cells into cells with a gene-expression

phenotype similar to that of adult human keratocytes. This

method may prove useful in the ongoing development of cell-

based treatment for corneal blindness.
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