763 research outputs found
Theory of Photon Blockade by an Optical Cavity with One Trapped Atom
In our recent paper [1], we reported observations of photon blockade by one
atom strongly coupled to an optical cavity. In support of these measurements,
here we provide an expanded discussion of the general phenomenology of photon
blockade as well as of the theoretical model and results that were presented in
Ref. [1]. We describe the general condition for photon blockade in terms of the
transmission coefficients for photon number states. For the atom-cavity system
of Ref. [1], we present the model Hamiltonian and examine the relationship of
the eigenvalues to the predicted intensity correlation function. We explore the
effect of different driving mechanisms on the photon statistics. We also
present additional corrections to the model to describe cavity birefringence
and ac-Stark shifts. [1] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T.
E. Northup, and H. J. Kimble, Nature 436, 87 (2005).Comment: 10 pages, 6 figure
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane
We investigate the influences of the excluded volume of molecules on
biochemical reaction processes on 2-dimensional surfaces using a model of
signal transduction processes on biomembranes. We perform simulations of the
2-dimensional cell-based model, which describes the reactions and diffusion of
the receptors, signaling proteins, target proteins, and crowders on the cell
membrane. The signaling proteins are activated by receptors, and these
activated signaling proteins activate target proteins that bind autonomously
from the cytoplasm to the membrane, and unbind from the membrane if activated.
If the target proteins bind frequently, the volume fraction of molecules on the
membrane becomes so large that the excluded volume of the molecules for the
reaction and diffusion dynamics cannot be negligible. We find that such
excluded volume effects of the molecules induce non-trivial variations of the
signal flow, defined as the activation frequency of target proteins, as
follows. With an increase in the binding rate of target proteins, the signal
flow varies by i) monotonically increasing; ii) increasing then decreasing in a
bell-shaped curve; or iii) increasing, decreasing, then increasing in an
S-shaped curve. We further demonstrate that the excluded volume of molecules
influences the hierarchical molecular distributions throughout the reaction
processes. In particular, when the system exhibits a large signal flow, the
signaling proteins tend to surround the receptors to form receptor-signaling
protein clusters, and the target proteins tend to become distributed around
such clusters. To explain these phenomena, we analyze the stochastic model of
the local motions of molecules around the receptor.Comment: 31 pages, 10 figure
Altered Toll-like receptor 2-mediated endotoxin tolerance is related to diminished interferon beta production.
Induction of endotoxin tolerance leads to a reduced inflammatory response after repeated challenge by LPS and is important for resolution of inflammation and prevention of tissue damage. Enterobacterial LPS is recognized by the TLR4 signaling complex, wh
Anomaly Equations and Intersection Theory
Six-dimensional supergravity theories with N=(1,0) supersymmetry must satisfy
anomaly equations. These equations come from demanding the cancellation of
gravitational, gauge and mixed anomalies. The anomaly equations have
implications for the geometrical data of Calabi-Yau threefolds, since F-theory
compactified on an elliptically fibered Calabi-Yau threefold with a section
generates a consistent six-dimensional N=(1,0) supergravity theory. In this
paper, we show that the anomaly equations can be summarized by three
intersection theory identities. In the process we also identify the geometric
counterpart of the anomaly coefficients---in particular, those of the abelian
gauge groups---that govern the low-energy dynamics of the theory. We discuss
the results in the context of investigating string universality in six
dimensions.Comment: 29 pages + appendices, 8 figures; v2: minor corrections, references
added; v3: minor corrections, reference adde
Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing.
Marine Protected Areas MPA have been widely used over the last 2 decades to address human impacts on marine habitats within an ecosystem management context. Few studies have quantified recovery of temperate rocky reef communities following the cessation of scallop dredging or demersal trawling. This is critical information for the future management of these habitats to contribute towards conservation and fisheries targets. The Lyme Bay MPA, in south west UK, has excluded towed demersal fishing gear from 206 km(2) of sensitive reef habitat using a Statutory Instrument since July 2008. To assess benthic recovery in this MPA we used a flying video array to survey macro epi-benthos annually from 2008 to 2011. 4 treatments (the New Closure, previously voluntarily Closed Controls and Near or Far Open to fishing Controls) were sampled to test a recovery hypothesis that was defined as 'the New Closure becoming more similar to the Closed Controls and less similar to the Open Controls'. Following the cessation of towed demersal fishing, within three years positive responses were observed for species richness, total abundance, assemblage composition and seven of 13 indicator taxa. Definitive evidence of recovery was noted for species richness and three of the indicator taxa (Pentapora fascialis, Phallusia mammillata and Pecten maximus). While it is hoped that MPAs, which exclude anthropogenic disturbance, will allow functional restoration of goods and services provided by benthic communities, it is an unknown for temperate reef systems. Establishing the likely timescales for restoration is key to future marine management. We demonstrate the early stages of successful recruitment and link these to the potential wider ecosystem benefits including those to commercial fisheries
Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter
We address the open question of performing an explicit stabilisation of all
closed string moduli (including dilaton, complex structure and Kaehler moduli)
in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric
geometry we construct Calabi-Yau manifolds with del Pezzo singularities.
D-branes located at such singularities can support the Standard Model gauge
group and matter content. In order to control complex structure moduli
stabilisation we consider Calabi-Yau manifolds which exhibit a discrete
symmetry that reduces the effective number of complex structure moduli. We
calculate the corresponding periods in the symplectic basis of invariant
three-cycles and find explicit flux vacua for concrete examples. We compute the
values of the flux superpotential and the string coupling at these vacua.
Starting from these explicit complex structure solutions, we obtain AdS and dS
minima where the Kaehler moduli are stabilised by a mixture of D-terms,
non-perturbative and perturbative alpha'-corrections as in the LARGE Volume
Scenario. In the considered example the visible sector lives at a dP_6
singularity which can be higgsed to the phenomenologically interesting class of
models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde
- …