679 research outputs found

    Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation

    Get PDF
    Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development

    Winter Bird Assemblages in Rural and Urban Environments: A National Survey

    Get PDF
    Urban development has a marked effect on the ecological and behavioural traits of many living organisms, including birds. In this paper, we analysed differences in the numbers of wintering birds between rural and urban areas in Poland. We also analysed species richness and abundance in relation to longitude, latitude, human population size, and landscape structure. All these parameters were analysed using modern statistical techniques incorporating species detectability. We counted birds in 156 squares (0.25 km2 each) in December 2012 and again in January 2013 in locations in and around 26 urban areas across Poland (in each urban area we surveyed 3 squares and 3 squares in nearby rural areas). The influence of twelve potential environmental variables on species abundance and richness was assessed with Generalized Linear Mixed Models, Principal Components and Detrended Correspondence Analyses. Totals of 72 bird species and 89,710 individual birds were recorded in this study. On average (±SE) 13.3 ± 0.3 species and 288 ± 14 individuals were recorded in each square in each survey. A formal comparison of rural and urban areas revealed that 27 species had a significant preference; 17 to rural areas and 10 to urban areas. Moreover, overall abundance in urban areas was more than double that of rural areas. There was almost a complete separation of rural and urban bird communities. Significantly more birds and more bird species were recorded in January compared to December. We conclude that differences between rural and urban areas in terms of winter conditions and the availability of resources are reflected in different bird communities in the two environments

    Assessing and managing concurrent hearing, vision and cognitive impairments in older people: an international perspective from healthcare professionals

    Get PDF
    Background: there is a significant gap in the understanding, assessment and management of people with dementia and concurrent hearing and vision impairments. / Objective: from the perspective of professionals in dementia, hearing and vision care, we aimed to: (1) explore the perceptions of gaps in assessment and service provision in ageing-related hearing, vision and cognitive impairment; (2) consider potential solutions regarding this overlap and (3) ascertain the attitudes, awareness and practice, with a view to implementing change. / Methods: our two-part investigation with hearing, vision, and dementia care professionals involved: (1) an in-depth, interdisciplinary, international Expert Reference Group (ERG; n = 17) and (2) a wide-scale knowledge, attitudes and practice survey (n = 653). The ERG involved consensus discussions around prototypic clinical vignettes drawn from a memory centre, an audiology clinic, and an optometry clinic, analysed using an applied content approach. / Results: the ERG revealed several gaps in assessment and service provision, including a lack of validated assessment tools for concurrent impairments, poor interdisciplinary communication and care pathways, and a lack of evidence-based interventions. Consensus centred on the need for flexible, individualised, patient-centred solutions, using an interdisciplinary approach. The survey data validated these findings, highlighting the need for clear guidelines for assessing and managing concurrent impairments. / Conclusions: this is the first international study exploring professionals’ views of the assessment and care of individuals with age-related hearing, vision and hearing impairment. The findings will inform the adaptation of assessments, the development of supportive interventions, and the new provision of services

    Natural genetic variation in fluctuating asymmetry of wing shape in Drosophila melanogaster

    Get PDF
    Fluctuating asymmetry (FA), defined as random deviation from perfect symmetry, has been used to assay the inability of individuals to buffer their developmental processes from environmental perturbations (i.e., developmental instability). In this study, we aimed to characterize the natural genetic variation in FA of wing shape in Drosophila melanogaster, collected from across the Japanese archipelago. We quantified wing shapes at whole wing and partial wing component levels and evaluated their mean and FA. We also estimated the heritability of the mean and FA of these traits. We found significant natural genetic variation in all the mean wing traits and in FA of one of the partial wing components. Heritability estimates for mean wing shapes were significant in two and four out of five wing traits in males and females, respectively. On the contrary, heritability estimates for FA were low and not significant. This is a novel study of natural genetic variation in FA of wing shape. Our findings suggest that partial wing components behave as distinct units of selection for FA, and local adaptation of the mechanisms to stabilize developmental processes occur in nature

    Both habitat change and local lek structure influence patterns of spatial loss and recovery in a black grouse population

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10144-015-0484-3Land use change is a major driver of declines in wildlife populations. Where human economic or recreational interests and wildlife share landscapes this problem is exacerbated. Changes in UK black grouse Tetrao tetrix populations are thought to have been strongly influenced by upland land use change. In a long-studied population within Perthshire, lek persistence is positively correlated with lek size, and remaining leks clustered most strongly within the landscape when the population is lowest, suggesting that there may be a demographic and/or spatial context to the reaction of the population to habitat changes. Hierarchical cluster analysis of lek locations revealed that patterns of lek occupancy when the population was declining were different to those during the later recovery period. Response curves from lek-habitat models developed using MaxEnt for periods with a declining population, low population, and recovering population were consistent across years for most habitat measures. We found evidence linking lek persistence with habitat quality changes and more leks which appeared between 1994 and 2008 were in improving habitat than those which disappeared during the same period. Generalised additive models (GAMs) identified changes in woodland and starting lek size as being important indicators of lek survival between declining and low/recovery periods. There may also have been a role for local densities in explaining recovery since the population low point. Persistence of black grouse leks was influenced by habitat, but changes in this alone did not fully account for black grouse declines. Even when surrounded by good quality habitat, leks can be susceptible to extirpation due to isolation

    A Motif Unique to the Human Dead-Box Protein DDX3 Is Important for Nucleic Acid Binding, ATP Hydrolysis, RNA/DNA Unwinding and HIV-1 Replication

    Get PDF
    DEAD-box proteins are enzymes endowed with nucleic acid-dependent ATPase, RNA translocase and unwinding activities. The human DEAD-box protein DDX3 has been shown to play important roles in tumor proliferation and viral infections. In particular, DDX3 has been identified as an essential cofactor for HIV-1 replication. Here we characterized a set of DDX3 mutants biochemically with respect to nucleic acid binding, ATPase and helicase activity. In particular, we addressed the functional role of a unique insertion between motifs I and Ia of DDX3 and provide evidence for its implication in nucleic acid binding and HIV-1 replication. We show that human DDX3 lacking this domain binds HIV-1 RNA with lower affinity. Furthermore, a specific peptide ligand for this insertion selected by phage display interferes with HIV-1 replication after transduction into HelaP4 cells. Besides broadening our understanding of the structure-function relationships of this important protein, our results identify a specific domain of DDX3 which may be suited as target for antiviral drugs designed to inhibit cellular cofactors for HIV-1 replication

    Case report and summary of literature: giant perineal keloids treated with post-excisional radiotherapy

    Get PDF
    BACKGROUND: Keloids are common benign tumors of the dermis, typically arising after insult to the skin. While typically only impinging on cosmesis, large or recurrent keloids may require therapeutic intervention. While no single standardized treatment course has been established, several series report excellent outcomes for keloids with post-surgery radiation therapy. CASE PRESENTATION: We present a patient with a history of recurrent keloids arising in the absence of an ascribed trauma and a maternal familial history of keloid formation, whose physical examination several large perineal keloids of 6-20 cm in the largest dimension. The patient was treated with surgical extirpation and adjuvant radiation therapy. Radiotherapy was delivered to the scar bed to a total dose of 22 Gy over 11 daily fractions. Acute radiotherapy toxicity necessitated a treatment break due to RTOG Grade III acute toxicity (moderate ulceration and skin breakdown) which resolved rapidly during a 3-day treatment break. The patient demonstrated local control and has remained free of local recurrence for more than 2 years. CONCLUSION: Radiotherapy for keloids represents a safe and effective option for post-surgical keloid therapy, especially for patients with bulky or recurrent disease

    Promoter methylation correlates with reduced NDRG2 expression in advanced colon tumour

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant DNA methylation of CpG islands of cancer-related genes is among the earliest and most frequent alterations in cancerogenesis and might be of value for either diagnosing cancer or evaluating recurrent disease. This mechanism usually leads to inactivation of tumour-suppressor genes. We have designed the current study to validate our previous microarray data and to identify novel hypermethylated gene promoters.</p> <p>Methods</p> <p>The validation assay was performed in a different set of 8 patients with colorectal cancer (CRC) by means quantitative reverse-transcriptase polymerase chain reaction analysis. The differential RNA expression profiles of three CRC cell lines before and after 5-aza-2'-deoxycytidine treatment were compared to identify the hypermethylated genes. The DNA methylation status of these genes was evaluated by means of bisulphite genomic sequencing and methylation-specific polymerase chain reaction (MSP) in the 3 cell lines and in tumour tissues from 30 patients with CRC.</p> <p>Results</p> <p>Data from our previous genome search have received confirmation in the new set of 8 patients with CRC. In this validation set six genes showed a high induction after drug treatment in at least two of three CRC cell lines. Among them, the N-myc downstream-regulated gene 2 (<it>NDRG2) </it>promoter was found methylated in all CRC cell lines. <it>NDRG2 </it>hypermethylation was also detected in 8 out of 30 (27%) primary CRC tissues and was significantly associated with advanced AJCC stage IV. Normal colon tissues were not methylated.</p> <p>Conclusion</p> <p>The findings highlight the usefulness of combining gene expression patterns and epigenetic data to identify tumour biomarkers, and suggest that NDRG2 silencing might bear influence on tumour invasiveness, being associated with a more advanced stage.</p

    Ostriches Sleep like Platypuses

    Get PDF
    Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals
    corecore