212 research outputs found

    Perfect Circles: A Study of the Scattering Regions of Wolf Rayet Binary Stars

    Get PDF
    Although we have been able to develop an understanding of many aspects of stellar evolution and formation, a few key gaps remain. One is the fate of massive binary star systems composed of Wolf-Rayet (WR) and O-type stars. In these WR + O binaries, the stellar winds surrounding these stars collide, creating a complex interaction region in which light from the stars scatters and becomes polarized. To study these scattering regions, I employ a technique that allows me to map the polarization of the light emitted from these stars and track its variation over the binary orbit. I found that although we have some models for this behavior, they do not fully reproduce the observed data, suggesting these systems are more complex that previously known. The unexplained behaviors give clues to the complexity of these systems and shows how these models can be improved upon in the future. Understanding the structure and evolution of this scattering region could be the key to understanding the lives and eventual deaths of these stars

    A Spectropolarimetric Study of Southern WR + O Binaries

    Get PDF
    The classical Wolf-Rayet (WR) state is the evolved stage of a massive star, post main-sequence. They are characterized by their strong emission line spectra and stellar winds that are often more than 10 times denser than that of their progenitor O-type stars, which have mass loss rates of 10-6 MΘyr-1. The evolution of WR stars and their connection to specific types of supernovae (SNe) is an open question. Current theory suggests that rapidly rotating massive stars may be the progenitors of SNe that produce long-duration gamma-ray bursts. The interaction between WR stars and their companion in binary systems may provide sufficient angular momentum to create such progenitors. Angular momentum (and therefore rotation) tends to create aspherical structures in astronomical objects (e.g. Be star disks, T Tauri jets caused by decretion and accretion respectively) that can be investigated using linear polarimetry, even for unresolved sources. I have investigated WR stars in detail to determine the geometric structure of their winds using spectropolarimetry. I began by using archival broadband polarimetric data to search for intrinsic polarization in a sample of more than 40 single and binary WR stars, finding that 12 of the stars exhibit intrinsic continuum polarization or line polarization effects that indicate aspherical or non-uniform winds. In the later stages of the project, I used the Southern African Large Telescope (SALT) to obtain time-dependent spectropolarimetric observations of 10 of the stars in that sample, along with 8 additional targets. These targets are all WR + O binary systems, whose complex winds are best observed over time with spectropolarimetry to determine the geometry of the wind across different emission lines and the continuum. I investigated two stars in the sample, WR 42 and WR 79, and found that they exhibit classic continuum polarization signatures of binary orbits, as well as intriguing orbital line polarization effects. I compared the line polarization behaviour with the predictions of existing spectrally-derived models of the systems to obtain new information about the structure of the colliding wind regions. Finally, I have modified an existing 3-D Monte Carlo radiative transfer code to include an additional source of photons that represents a companion star. This allows the code to treat the asymmetric structures seen in massive binary systems. I used this updated code to simulate the well-observed WR + O system V444 Cygni. I created a set of emission regions to simulate line emission from both the WR wind and wind-wind collision regions, finding that the wind-wind collision creates very strong polarimetric signals that appear similar to those in other systems in my SALT sample. The results shed new light on the relationships among WR + O binaries and yield clues to their subsequent evolution and potential roles as SN and GRB progenitors

    Polarization simulations of stellar wind bow shock nebulae. II. The case of dust scattering

    Full text link
    We study the polarization produced by scattering from dust in a bow shock-shaped region of enhanced density surrounding a stellar source, using the Monte Carlo radiative transfer code SLIP. Bow shocks are structures formed by the interaction of the winds of fast-moving stars with the interstellar medium. Our previous study focused on the polarization produced in these structures by electron scattering; we showed that polarization is highly dependent on inclination angle and that multiple scattering changes the shape and degree of polarization. In contrast to electron scattering, dust scattering is wavelength-dependent, which changes the polarization behaviour. Here we explore different dust particle sizes and compositions and generate polarized spectral energy distributions for each case. We find that the polarization SED behaviour depends on the dust composition and grain size. Including dust emission leads to polarization changes with temperature at higher optical depth in ways that are sensitive to the orientation of the bow shock. In various scenarios and under certain assumptions, our simulations can constrain the optical depth and dust properties of resolved and unresolved bow shock-shaped scattering regions.Constraints on optical depth can provide estimates of local ISM density for observed bow shocks. We also study the impact of dust grains filling the region between the star and bow shock. We see that as the density of dust between the star and bow shock increases, the resulting polarization is suppressed for all the optical depth regimes.Comment: 21 pages, accepted for publication in MNRA

    Searching for a Hypervelocity White Dwarf Companion: A Proper Motion Survey of SN 1006

    Full text link
    Type Ia Supernovae (SNe Ia) are securely understood to come from the thermonuclear explosion of a white dwarf as a result of binary interaction, but the nature of that binary interaction and the secondary object is uncertain. Recently, a double white dwarf model known as the dynamically driven double-degenerate double-detonation (D6) model has become a promising explanation for these events. One realization of this scenario predicts that the companion may survive the explosion and reside within the remnant as a fast moving (Vpeculiar>1000V_{peculiar} >1000 km s−1^{-1}), overluminous (L>0.1L⊙L > 0.1 L_\odot) white dwarf. Recently, three objects which appear to have these unusual properties have been discovered in the Gaia survey. We obtained photometric observations of the SN Ia remnant SN 1006 with the Dark Energy Camera over four years to attempt to discover a similar star. We present a deep, high precision astrometric proper motion survey of the interior stellar population of the remnant. We rule out the existence of a high proper motion object consistent with our tested realization of the D6 scenario (Vtransverse>600V_{transverse} > 600 km s−1^{-1} with mr0.0176L⊙m_r 0.0176 L_\odot). We conclude that such a star does not exist within the remnant, or is hidden from detection by either strong localized dust or the unlikely possibility of ejection from the binary system near parallel to the line of sight.Comment: 15 pages, 10 figure

    Modeling the Optical to Ultraviolet Polarimetric Variability from Thomson Scattering in Colliding-wind Binaries

    Full text link
    peer reviewedAbstract Massive-star binaries are critical laboratories for measuring masses and stellar wind mass-loss rates. A major challenge is inferring viewing inclination and extracting information about the colliding-wind interaction (CWI) region. Polarimetric variability from electron scattering in the highly ionized winds provides important diagnostic information about system geometry. We combine for the first time the well-known generalized treatment of Brown et al. for variable polarization from binaries with the semianalytic solution for the geometry and surface density CWI shock interface between the winds based on Cantó et al. Our calculations include some simplifications in the form of inverse-square law wind densities and the assumption of axisymmetry, but in so doing they arrive at several robust conclusions. One is that when the winds are nearly equal (e.g., O+O binaries) the polarization has a relatively mild decline with binary separation. Another is that despite Thomson scattering being a gray opacity, the continuum polarization can show chromatic effects at ultraviolet wavelengths but will be mostly constant at longer wavelengths. Finally, when one wind dominates the other, as, for example, in WR+OB binaries, the polarization is expected to be larger at wavelengths where the OB component is more luminous and generally smaller at wavelengths where the WR component is more luminous. This behavior arises because, from the perspective of the WR star, the distortion of the scattering envelope from spherical is a minor perturbation situated far from the WR star. By contrast, the polarization contribution from the OB star is dominated by the geometry of the CWI shock

    UV Spectropolarimetry with Polstar: Massive Star Binary Colliding Winds

    Full text link
    The winds of massive stars are important for their direct impact on the interstellar medium, and for their influence on the final state of a star prior to it exploding as a supernova. However, the dynamics of these winds is understood primarily via their illumination from a single central source. The Doppler shift seen in resonance lines is a useful tool for inferring these dynamics, but the mapping from that Doppler shift to the radial distance from the source is ambiguous. Binary systems can reduce this ambiguity by providing a second light source at a known radius in the wind, seen from orbitally modulated directions. From the nature of the collision between the winds, a massive companion also provides unique additional information about wind momentum fluxes. Since massive stars are strong ultraviolet (UV) sources, and UV resonance line opacity in the wind is strong, UV instruments with a high resolution spectroscopic capability are essential for extracting this dynamical information. Polarimetric capability also helps to further resolve ambiguities in aspects of the wind geometry that are not axisymmetric about the line of sight, because of its unique access to scattering direction information. We review how the proposed MIDEX-scale mission Polstar can use UV spectropolarimetric observations to critically constrain the physics of colliding winds, and hence radiatively-driven winds in general. We propose a sample of 20 binary targets, capitalizing on this unique combination of illumination by companion starlight, and collision with a companion wind, to probe wind attributes over a range in wind strengths. Of particular interest is the hypothesis that the radial distribution of the wind acceleration is altered significantly, when the radiative transfer within the winds becomes optically thick to resonance scattering in multiple overlapping UV lines.Comment: 26 pages, 12 figures, Review in a topical collection series of Astrophysics and Space Sciences on the proposed Polstar satellite. arXiv admin note: substantial text overlap with arXiv:2111.1155

    H-ATLAS/GAMA: quantifying the morphological evolution of the galaxy population using cosmic calorimetry

    Get PDF
    Using results from the Herschel Astrophysical Terrahertz Large-Area Survey (H-ATLAS) and the Galaxy and Mass Assembly (GAMA) project, we show that, for galaxy masses above ≃ 108 M⊙, 51 per cent of the stellar mass-density in the local Universe is in early-type galaxies (ETGs; Sérsic n > 2.5) while 89 per cent of the rate of production of stellar mass-density is occurring in late-type galaxies (LTGs; Sérsic n < 2.5). From this zero-redshift benchmark, we have used a calorimetric technique to quantify the importance of the morphological transformation of galaxies over the history of the Universe. The extragalactic background radiation contains all the energy generated by nuclear fusion in stars since the big bang. By resolving this background radiation into individual galaxies using the deepest far-infrared survey with the Herschel Space Observatory and a deep near-infrared/optical survey with the Hubble Space Telescope (HST), and using measurements of the Sérsic index of these galaxies derived from the HST images, we estimate that ≃83 per cent of the stellar mass-density formed over the history of the Universe occurred in LTGs. The difference between this value and the fraction of the stellar mass-density that is in LTGs today implies there must have been a major transformation of LTGs into ETGs after the formation of most of the stars
    • …
    corecore