62 research outputs found

    Voltage control of frequency, effective damping and threshold current in nano-constriction-based spin Hall nano-oscillators

    Full text link
    Using micromagnetic simulations, we study the interplay between strongly voltage-controlled magnetic anisotropy (VCMA), ΔK=±\Delta K = \pm200 kJ/m3^3, and gate width, w=w= 10--400 nm, in voltage-gated W/CoFeB/MgO based nano-constriction spin Hall nano-oscillators. The VCMA modifies the local magnetic properties such that the magnetodynamics transitions between regimes of \emph{i}) confinement, \emph{ii}) tuning, and \emph{iii}) separation, with qualitatively different behavior. We find that the strongest tuning is achieved for gate widths of the same size as the the constriction width, for which the effective damping can be increased an order of magnitude compared to its intrinsic value. As a consequence, voltage control remains efficient over a very large frequency range, and subsequent manufacturing advances could allow SHNOs to be easily integrated into next-generation electronics for further fundamental studies and industrial applications

    Polyhedral Analysis using Parametric Objectives

    Get PDF
    The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its operations can be expensive, precluding their application to polyhedra that involve many variables. This paper describes a new approach to computing polyhedral domain operations. The core of this approach is an algorithm to calculate variable elimination (projection) based on parametric linear programming. The algorithm enumerates only non-redundant inequalities of the projection space, hence permits anytime approximation of the output

    Identification of H2_2CCC as a diffuse interstellar band carrier

    Full text link
    We present strong evidence that the broad, diffuse interstellar bands (DIBs) at 4881 and 5450\,\AA are caused by the B\,^1B1_1\,\leftarrow\,X\,^1A1_1 transition of H2_2CCC (l-C3_3H2_2). The large widths of the bands are due to the short lifetime of the B\,^1B1_1 electronic state. The bands are predicted from absorption measurements in a neon matrix and observed by cavity ring-down in the gas phase and show exact matches to the profiles and wavelengths of the two broad DIBs. The strength of the 5450\,\AA DIB leads to a l-C3_3H2_2 column density of 5×1014\sim5\times10^{14} cm2^{-2} towards HD\,183143 and 2×1014\sim2\times10^{14}\,cm2^{-2} to HD\,206267. Despite similar values of EE(BVB-V), the 4881 and 5450\,\AA DIBs in HD\,204827 are less than one third their strength in HD\,183143, while the column density of interstellar C3_3 is unusually high for HD\,204827 but undetectable for HD\,183143. This can be understood if C3_3 has been depleted by hydrogenation to species such as l-C3_3H2_2 towards HD\,183143. There are also three rotationally resolved sets of triplets of l-C3_3H2_2 in the 6150-6330\,\AA region. Simulations, based on the derived spectroscopic constants and convolved with the expected instrumental and interstellar line broadening, show credible coincidences with sharp, weak DIBs for the two observable sets of triplets. The region of the third set is too obscured by the α\alpha-band of telluric O2_2.Comment: 22 pages, 9 figure

    Robust mutual synchronization in long spin Hall nano-oscillator chains

    Full text link
    Mutual synchronization of N serially connected spintronic nano-oscillators increases their coherence by a factor NN and their output power by N2N^2. Increasing the number of mutually synchronized nano-oscillators in chains is hence of great importance for better signal quality and also for emerging applications such as oscillator-based neuromorphic computing and Ising machines where larger N can tackle larger problems. Here we fabricate spin Hall nano-oscillator chains of up to 50 serially connected nano-constrictions in W/NiFe, W/CoFeB/MgO, and NiFe/Pt stacks and demonstrate robust and complete mutual synchronization of up to 21 nano-constrictions, reaching linewidths of below 200 kHz and quality factors beyond 79,000, while operating at 10 GHz. We also find a square increase in the peak power with the increasing number of mutually synchronized oscillators, resulting in a factor of 400 higher peak power in long chains compared to individual nano-constrictions. Although chains longer than 21 nano-constrictions also show complete mutual synchronization, it is not as robust and their signal quality does not improve as much as they prefer to break up into partially synchronized states. The low current and low field operation of these oscillators along with their wide frequency tunability (2-28 GHz) with both current and magnetic fields, make them ideal candidates for on-chip GHz-range applications and neuromorphic computing.Comment: 9 Pages, 7 figure

    Electronic Spectra of Corannulenic Cations and Neutrals in Neon Matrices and Protonated Corannulene in the Gas Phase at 15 K

    Get PDF
    Three absorption systems starting at 624.1, 601.2, and 590.0 nm were detected in a 6 K neon matrix following deposition of mass selected m/z = 250 ions produced from corannulene vapour in a hot cathode ion source. The two latter systems were also observed after deposition of neutral corannulene in solid neon with concomitant bombardment of the matrix with argon ions. The features in the absorption spectrum are assigned to the 42A′′  ←  X2A′′ transition of cylobutadieno-benzo[ghi]fluoranthene cation and to the 32A′  ←  X2A′′ and 32A′′  ←  X2A′ transitions of two Jahn-Teller structures of bowl-shaped corannulene cations, respectively. The assignment is based on excitation energies calculated with the SAC-CI and CASPT2 methods. The electronic absorption spectrum of protonated corannulene has onsets at 515.1 and 398.8 nm in a neon matrix, following deposition of a mass-selected beam produced by reactions of corannulene with EtOH2+. The absorptions are assigned, on the basis of theoretical predictions, to the 3,41A  ←  X1A transitions. The electronic spectrum was also recorded in the gas phase using a resonant multiphoton fragmentation technique in an ion trap at vibrational and rotational temperatures of 15 K. The 3,41A  ←  X1A transitions are observed with origin bands at 521 ± 1 nm and 396.4 ± 0.1 nm. The 31A excited electronic state indicates fast internal conversion of ≈ 5 fs, while the 41A state has a lifetime of ≈ 0.2 ps. A distinct vibrational pattern is discernible in the 41A  ←  X1A transition

    Geometric and electronic structure of the Cs-doped Bi2Se3(0001) surface

    Get PDF
    Using surface x-ray diffraction and scanning tunneling microscopy in combination with first-principles calculations, we have studied the geometric and electronic structure of Cs-deposited Bi2Se3(0001) surface kept at room temperature. Two samples were investigated: a single Bi2Se3 crystal, whose surface was Ar sputtered and then annealed at ∼500∘C for several minutes prior to Cs deposition, and a 13-nm-thick epitaxial Bi2Se3 film that was not subject to sputtering and was annealed only at ∼350∘C. In the first case, a considerable fraction of Cs atoms occupy top layer Se atoms sites both on the terraces and along the upper step edges where they form one-dimensional-like structures parallel to the step. In the second case, Cs atoms occupy the fcc hollow site positions. First-principles calculations reveal that Cs atoms prefer to occupy Se positions on the Bi2Se3(0001) surface only if vacancies are present, which might be created during the crystal growth or during the surface preparation process. Otherwise, Cs atoms prefer to be located in fcc hollow sites in agreement with the experimental finding for the MBE-grown sample

    A search for diffuse bands in the circumstellar envelopes of post-AGB stars

    Full text link
    In this work we present the results of a systematic search for diffuse bands (DBs, hereafter) in the circumstellar envelopes of a carefully selected sample of post-AGB stars. We concentrated on the analysis of 9 of the DBs most commonly found in the interstellar medium. The strength of these features is determined using high resolution optical spectroscopy and the results obtained are compared with literature data on field stars affected only by interstellar reddening. Based on the weak features observed in the subsample of post-AGB stars dominated by circumstellar reddening we conclude that the carrier(s) of these DBs must not be present in the circumstellar environment of these sources, or at least not under the excitation conditions in which DBs are formed. The conclusion is applicable to all the post-AGB stars studied, irrespective of the dominant chemistry or the spectral type of the star considered. A detailed radial velocity analysis of the features observed in individual sources confirms this result, as the Doppler shifts measured are found to be consistent with an interstellar origin.Comment: Accepted for A&

    AFM study of morphology and mechanical properties of a chimeric 2 spider silk and bone sialoprotein protein for bone regeneration

    Get PDF
    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6merþBSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6merþBSP, and control films consisting of only the silk component (6mer). The behavior of the 6merþBSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2þ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.Silvia Games thanks the Foundation for Science and Technology (FCT) for supporting her Ph.D. grant, SFRH/BD/28603/2006. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the Chimera project (PTDC/EBB-EBI/109093/2008) funded by the FCT agency, the NIH (P41 EB002520) Tissue Engineering Resource Center, and the NIH (EB003210 and DE017207)
    corecore