2,553 research outputs found

    The Experimental plan of the 4m Resonant Sideband Extraction Prototype for The LCGT

    Get PDF
    The 4m Resonant Sideband Extraction (RSE) interferometer is a planned prototype of the LCGT interferometer. The aim of the experiment is to operate a powerrecycled Broadband RSE interferometer with suspended optics and to achieve diagonalization of length signals of the central part of the interferometer directly through the optical setup. Details of the 4m RSE interferometer control method as well as the design of the experimental setup will be presented

    The three-flavor chiral phase structure in hot and dense QCD matter

    Full text link
    Chiral symmetry restoration at nonzero temperature and quark densities are investigated in the framework of a linear sigma model with N_f=3 light quark flavors. After the derivation of the grand potential in mean-field approximation, the nonstrange and strange condensates, the in-medium masses of the scalar and pseudoscalar nonets are analyzed in hot and dense medium. The influence of the axial anomaly on the nonet masses and the isoscalar mixings on the pseudoscalar \eta-\eta' and scalar \sigma(600)-f_0(1370) complex are examined. The sensitivity of the chiral phase transition as well as the existence and location of a critical end point in the phase diagram on the value of the sigma mass is explored. The chiral critical surface with and without the influence of the axial U(1)_A anomaly is elaborated as a function of the pion and kaon masses for several values of the sigma mass.Comment: 19 pages, 12 figures, 2 tables, RevTex4; revised version, accepted for publication in PR

    Low-energy theorems of QCD and bulk viscosity at finite temperature and baryon density in a magnetic field

    Full text link
    The nonperturbative QCD vacuum at finite temperature and a finite baryon density in an external magnetic field is studied. Equations relating nonperturbative condensates to the thermodynamic pressure for T≠0T\neq 0, ÎŒq≠0\mu_q \neq 0 and H≠0H\neq 0 are obtained, and low-energy theorems are derived. A bulk viscosity ζ(T,ÎŒ,H)\zeta(T, \mu, H) is expressed in terms of basic thermodynamical quantities describing the quark-gluon matter at T≠0T\neq 0, ÎŒq≠0\mu_q \neq 0, and H≠0H\neq 0. Various limiting cases are also considered.Comment: 12 pages; v2: title changed, new section about bulk viscosity and new references added; v3: new discussion adde

    A Review of Object Detection Models based on Convolutional Neural Network

    Full text link
    Convolutional Neural Network (CNN) has become the state-of-the-art for object detection in image task. In this chapter, we have explained different state-of-the-art CNN based object detection models. We have made this review with categorization those detection models according to two different approaches: two-stage approach and one-stage approach. Through this chapter, it has shown advancements in object detection models from R-CNN to latest RefineDet. It has also discussed the model description and training details of each model. Here, we have also drawn a comparison among those models.Comment: 17 pages, 11 figures, 1 tabl

    Element Stratification in the Middle-Aged Type Ia Supernova Remnant G344.7-0.1

    Full text link
    Despite their importance, a detailed understanding of Type Ia supernovae (SNe Ia) remains elusive. X-ray measurements of the element distributions in supernova remnants (SNRs) offer important clues for understanding the explosion and nucleosynthesis mechanisms for SNe Ia. However, it is challenging to observe the entire ejecta mass in X-rays for young SNRs, because the central ejecta may not have been heated by the reverse shock yet. Here we present over 200 kilosecond Chandra observations of the Type Ia SNR G344.7-0.1, whose age is old enough for the reverse shock to have reached the SNR center, providing an opportunity to investigate the distribution of the entire ejecta mass. We reveal a clear stratification of heavy elements with a centrally peaked distribution of the Fe ejecta surrounded by intermediate-mass elements (IMEs: Si, S, Ar Ca) with an arc-like structure. The centroid energy of the Fe K emission is marginally lower in the central Fe-rich region than in the outer IME-rich regions, suggesting that the Fe ejecta were shock-heated more recently. These results are consistent with the prediction for standard SN Ia models, where the heavier elements are synthesized in the interior of an exploding white dwarf. We find, however, that the peak location of the Fe K emission is slightly offset to the west with respect to the geometric center of the SNR. This apparent asymmetry is likely due to the inhomogeneous density distribution of the ambient medium, consistent with our radio observations of the ambient molecular and neutral gas.Comment: 16 pages, 10 figures, Accepted for publication in Astrophysical Journa

    Gluonic phase versus LOFF phase in two-flavor quark matter

    Get PDF
    We study the gluonic phase in a two-flavor color superconductor as a function of the ratio of the gap over the chemical potential mismatch,Δ/ÎŽÎŒ\Delta/\delta\mu. We find that the gluonic phase resolves the chromomagnetic instability encountered in a two-flavor color superconductor for Δ/ÎŽÎŒ<2\Delta/\delta \mu < \sqrt{2}. We also calculate approximately the free energies of the gluonic phase and the single plane-wave LOFF phase and show that the former is favored over the latter for a wide range of coupling strengths.Comment: 6 pages, 3 figures, references added, revisions to text, version accepted for publication in Phys. Lett.

    Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

    Get PDF
    We study the phase diagram of quark matter at finite temperature (T) and finite chemical potential (mu) in the strong coupling limit of lattice QCD for color SU(3). We derive an analytical expression of the effective free energy as a function of T and mu, including baryon effects. The finite temperature effects are evaluated by integrating over the temporal link variable exactly in the Polyakov gauge with anti-periodic boundary condition for fermions. The obtained phase diagram shows the first order phase transition at low temperatures and the second order phase transition at high temperatures separated by the tri-critical point in the chiral limit. Baryon has effects to reduce the effective free energy and to extend the hadron phase to a larger mu direction at low temperatures.Comment: 18 pages, 10 figure

    Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC

    Full text link
    We discuss the relevance of higher order moments of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher moments at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order moments of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second to fourth order moments of the net proton number fluctuations at RHIC. We point out that the sixth order moments of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the thermal freeze-out to the crossover line.Comment: 24 pages, 12 EPS files, revised version, to appear in EPJ
    • 

    corecore