173 research outputs found

    Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants

    Get PDF
    ACAP-type ARF GTPase activating proteins (ARF-GAPs) regulate multiple cellular processes, including endocytosis, secretion, phagocytosis, cell adhesion and cell migration. However, the regulation of ACAP functions by other cellular proteins is poorly understood. We have reported previously that a plant ACAP, VAN3, plays a pivotal role in plant venation continuity. Here, we report on newly identified VAN3 regulators: the CVP2 (cotyledon vascular pattern 2) 5 PTase, which is considered to degrade IP3 and also to produce PtdIns(4) P from PtdIns(4,5) P-2; and a PH domain-containing protein, VAB (VAN3 binding protein). Combinational mutations of both CVP2 and its closest homologue CVL1 (CVP2 like 1) phenocopied the strong allele of van3 mutants, showing severe vascular continuity. The phenotype of double mutants between van3, cvp2 and vab suggested that VAN3, CVP2 and VAB function in vascular pattern formation in the same pathway. Localization analysis revealed that both CVP2 and VAB colocalize with VAN3 in the trans-Golgi network (TGN), supporting their functions in the same pathway. The subcellular localization of VAN3 was dependent on its PH domain, and mislocalization of VAN3 was induced in cvp2 or vab mutants. These results suggest that CVP2 and VAB cooperatively regulate the subcellular localization of VAN3 through the interaction between its PH domain and phosphoinositides and/or inositol phosphates. In addition, PtdIns(4) P, to which VAN3 binds preferentially, enhanced the ARF-GAP activity of VAN3, whereas IP3 inhibited it. These results suggest the existence of PtdIns(4) P and/or IP3-dependent subcellular targeting and regulation of VAN3 ACAP activity that governs plant vascular tissue continuity

    Comprehensive analysis of the regulatory roles of auxin in early transdifferentiation into xylem cells

    Get PDF
    Auxin is essential for the formation of the vascular system. We previously reported that a polar auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) decreased intracellular auxin levels and prevented tracheary element (TE) differentiation from isolated Zinnia mesophyll cells, but that additional auxin, 1-naphthaleneacetic acid (NAA) overcame this inhibition. To understand the role of auxin in gene regulation during TE differentiation, we performed microarray analysis of genes expressed in NPA-treated cells and NPA-NAA-treated cells. The systematic gene expression analysis revealed that NAA promoted the expression of genes related to auxin signaling and transcription factors that are known to be key regulators of differentiation of procambial and xylem precursor cells. NAA also promoted the expression of genes related to biosynthesis and metabolism of other plant hormones, such as cytokinin, gibberellin and brassinosteroid. Interestingly, detailed analysis showed that NAA rapidly induces the expression of auxin carrier gene homologues. It suggested a positive feedback loop for auxin-regulating vascular differentiation. Based on these results, we discuss the auxin function in early processes of transdifferentiation into TE

    A Novel Pollen-Pistil Interaction Conferring High-Temperature Tolerance during Reproduction via CLE45 Signaling

    Get PDF
    SummaryFlowering plants in the reproductive stage are particularly vulnerable to ambient temperature fluctuations [1–6]. Nevertheless, they maintain seed production under certain levels of exposure to temperature change. The mechanisms underlying this temperature tolerance are largely unknown. Using an in vitro Arabidopsis pollen tube culture, we found that a synthetic CLV3/ESR-related peptide, CLE45, prolonged pollen tube growth. A subsequent screen of Arabidopsis mutants of leucine-rich repeat receptor-like kinase genes identified two candidate receptors for CLE45 peptide, STERILITY-REGULATING KINASE MEMBER1 (SKM1) and SKM2. The double loss-of-function mutant was insensitive to CLE45 peptide in terms of pollen tube growth in vitro. The SKM1 protein actually interacted with CLE45 peptide. CLE45 was preferentially expressed in the stigma in the pistil at 22°C, but upon temperature shift to 30°C, its expression expanded to the transmitting tract, along which pollen tubes elongated. In contrast, both SKM1 and SKM2 were expressed in pollen. Disturbance of CLE45-SKM1/SKM2 signaling transduction by either RNAi suppression of CLE45 expression or introduction of a kinase-dead version of SKM1 into skm1 plants reduced seed production at 30°C, but not at 22°C. Taken together with the finding that CLE45 peptide application alleviated mitochondrial decay during the in vitro pollen tube culture, these results strongly suggest that the pollen-pistil interaction via the CLE45-SKM1/SKM2 signaling pathway sustains pollen performance under higher temperatures, leading to successful seed production

    C-type natriuretic peptide concentrations in the plasma and cerebrospinal fluid of patients with subarachnoid hemorrhage

    Get PDF
    BACKGROUND: Cerebral vasospasm is a poor resulting outcome of a ruptured cerebral aneurysm; to clarify the mechanism of vasospasm it is important to improve this outcome. C-type natriuretic peptide (CNP) is present in the brain as a cerebral vasodilator; it is also an endothelium-derived relaxing factor produced via cGMP. We speculated that CNP might be an inhibitor of cerebral vasospasm after subarachnoid hemorrhage (SAH). METHODS: To clarify the role of CNP in cerebral vasospasm after SAH, we conducted 1 week monitoring of CNP concentrations in the plasma and cerebrospinal fluid (CSF) of 26 patients who had undergone clipping within 24 hours of the occurrence of SAH, and divided them into group A (positive for angiographic spasm) and group B (negative for angiographic spasm). We also examined CNP concentrations in the CSF of patients who were receiving spinal anesthesia for small orthopedic operations, as reference patients. RESULTS: The CNP concentration in the CSF on day 1 was higher than in the reference patients and decreased in both test groups, but we did not observe any significant difference between the groups. CNP concentrations in the plasma did not change in either group. CONCLUSIONS: CNP concentrations in the CSF were high in the acute phase after SAH, whereas plasma CNP concentrations remained constant. However, our findings did not support our hypothesis because we did not find any relationship between vasospasm and changes in CNP concentrations in the CSF

    Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation.

    Get PDF
    Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed that cyst nematode CLE-like effector proteins delivered into host cells through a stylet, act as ligand mimics of plant A-type CLE peptides and are pivotal for successful parasitism. Here we report the identification of a new class of CLE peptides from cyst nematodes with functional similarity to the B-type CLE peptide TDIF (tracheary element differentiation inhibitory factor) encoded by the CLE41 and CLE44 genes in Arabidopsis. We further demonstrate that the TDIF-TDR (TDIF receptor)-WOX4 pathway, which promotes procambial meristem cell proliferation, is involved in beet cyst nematode Heterodera schachtii parasitism. We observed activation of the TDIF pathway in developing feeding sites, reduced nematode infection in cle41 and tdr-1 wox4-1 mutants, and compromised syncytium size in cle41, tdr-1, wox4-1 and tdr-1 wox4-1 mutants. By qRT-PCR and promoter:GUS analyses, we showed that the expression of WOX4 is decreased in a clv1-101 clv2-101 rpk2-5 mutant, suggesting that WOX4 is a potential downstream target of nematode CLEs. Exogenous treatment with both nematode A-type and B-type CLE peptides induced massive cell proliferation in wild type roots, suggesting that the two types of CLEs may regulate cell proliferation during feeding site formation. These findings highlight an important role of the procambial cell proliferation pathway in cyst nematode feeding site formation

    Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana

    Get PDF
    The innate immune response is, in the first place, elicited at the site of infection. Thus, the host response can be different among the infected cells and the cells surrounding them. Effector-triggered immunity (ETI), a form of innate immunity in plants, is triggered by specific recognition between pathogen effectors and their corresponding plant cytosolic immune receptors, resulting in rapid localized cell death known as hypersensitive response (HR). HR cell death is usually limited to a few cells at the infection site, and is surrounded by a few layers of cells massively expressing defense genes such as Pathogenesis-Related Gene 1 (PR1). This virtually concentric pattern of the cellular responses in ETI is proposed to be regulated by a concentration gradient of salicylic acid (SA), a phytohormone accumulated around the infection site. Recent studies demonstrated that jasmonic acid (JA), another phytohormone known to be mutually antagonistic to SA in many cases, is also accumulated in and required for ETI, suggesting that ETI is a unique case. However, the molecular basis for this uniqueness remained largely to be solved. Here, we found that, using intravital time-lapse imaging, the JA signaling pathway is activated in the cells surrounding the central SA-active cells around the infection sites in Arabidopsis thaliana. This distinct spatial organization explains how these two phythormone pathways in a mutually antagonistic relationship can be activated simultaneously during ETI. Our results re-emphasize that the spatial consideration is a key strategy to gain mechanistic insights into the apparently complex signaling cross-talk in immunity.A correction has been published:Plant and Cell Physiology, Volume 59, Issue 2, 1 February 2018, Pages 43

    A Versatile Method for Mounting Arabidopsis Leaves for Intravital Time-lapse Imaging

    Get PDF
    We report a simple and versatile method for performing fluorescent live-imaging of Arabidopsis thaliana leaves over an extended period of time. We use a transgenic Arabidopsis plant expressing a fluorescent reporter gene under the control of an immunity-related promoter as an example for gaining spatiotemporal understanding of plant immune responses.Video Articl

    VISUAL-CC system uncovers the role of GSK3 as an orchestrator of vascular cell type ratio in plants

    Get PDF
    The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio. Tamaki et al. develop VISUAL-CC to study SE-CC (sieve elements-companion cells) complex formation. They show that the balance in the SE/CC ratio is dependent on GSK3 activity using different genetic backgrounds. Their work provides insights on the role of GSK3 as a cell-fate switch in the phloem.Peer reviewe
    corecore