270 research outputs found

    Whole-body patterns of the range of joint motion in young adults: masculine type and feminine type

    Get PDF
    Background: Understanding the whole-body patterns of joint flexibility and their related biological and physical factors contributes not only to clinical assessments but also to the fields of human factors and ergonomics. In this study, ranges of motion (ROMs) at limb and trunk joints of young adults were analysed to understand covariation patterns of different joint motions and to identify factors associated with the variation in ROM. Methods: Seventy-eight healthy volunteers (42 males and 36 females) living on Okinawa Island, Japan, were recruited. Passive ROM was measured at multiple joints through the whole body (31 measurements) including the left and right side limbs and trunk. Results: Comparisons between males and females, dominant and non-dominant sides, and antagonistic motions indicated that body structures influence ROMs. In principal component analysis (PCA) on the ROM data, the first principal component (PC1) represented the sex difference and a similar covariation pattern appeared in the analysis within each sex. Multiple regression analysis showed that this component was associated with sex, age, body fat %, iliospinale height, and leg extension strength. Conclusions: The present study identified that there is a spectrum of “masculine” and “feminine” types in the whole-body patterns of joint flexibility. This study also suggested that body proportion and composition, muscle mass and strength, and possibly skeletal structures partly explain such patterns. These results would be important to understand individual variation in susceptibility to joint injuries and diseases and in one’s suitable and effective postures and motions

    Hall coefficient of La1.88y_{1.88-y}Yy_ySr0.12_{0.12}CuO4_4 (y=0,0.04y=0, 0.04) at low temperatures under high magnetic fields

    Full text link
    The Hall coefficient in the low-temperature tetragonal phase and the mid-temperature orthorhombic phase of La1.88y_{1.88-y}Yy_ySr0.12_{0.12}CuO4_4 (y=0,0.04y=0, 0.04) single crystals is measured under high magnetic fields up to 9 T in order to investigate the detailed behavior of the transport properties at low temperatures in the stripe phase. When the superconductivity is suppressed by high magnetic fields, the Hall coefficient has negative values in low temperatures, and the temperature region of the negative values spreads as increasing magnetic fields. This result indicates that the Hall coefficient in the stripe phase around x=0.12x=0.12 is a finite negative value, not zero.Comment: 4 pages, 4 figures. to be published to Physical Review

    Low Temperature Ground States and Field-Induced Phase Transitions in α-(BEDT-TTF)_2-MHg(XCN)_4 (M=K, Tl, Rb, NH_4; X=S, Se) (Research in High Magnetic Fields)

    Get PDF
    There have been observed in a series of isostructural α-(BEDT-TTF)_2MHg(XCN)_4\u27s a variety of ground states such as spin-density-wave metallic state (M=K, Tl, Rb; X=S), superconducting one (M=NH_4; X=S), and simple metallic one (M=K, Tl; X=Se). Current status of these researches is outlined, including the magnetic field effects on the first group which appear in high fields more than 20T at low temperatures

    Superconducting Gap Structure of Spin-Triplet Superconductor Sr_2RuO_4 Studied by Thermal Conductivity

    Full text link
    To clarify the superconducting gap structure of the spin-triplet superconductor Sr_2RuO_4, the in-plane thermal conductivity has been measured as a function of relative orientations of the thermal flow, the crystal axes, and a magnetic field rotating within the 2D RuO_2 planes. The in-plane variation of the thermal conductivity is incompatible with any model with line nodes vertical to the 2D planes and indicates the existence of horizontal nodes. These results place strong constraints on models that attempt to explain the mechanism of the triplet superconductivity.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    The comparative anatomy of the folds, fossae, and adhesions around the duodenojejunal flexure in mammals

    Get PDF
    Background: Anatomical knowledge of the duodenojejunal flexure is necessary for abdominal surgeries, and also important for physiologic studies about the duodenum. But little is known about the anatomy of this region in mammals. Here, we examined comparative anatomy to understand the anatomical formation of the duodenojejunal flexure in mammals. Materials and methods: The areas around the duonenojejunal flexure were ob­served in mouse, rat, dog, pig, and human, and the anatomical structures around the duodenojejunal junction in the animals were compared with those in human. Results: The superior and inferior duodenal folds, and the superior and inferior duodenal fossae were identified in all examined humans. In pig, the structures were not clearly identified because the duodenum strongly adhered to the retroperitoneum and to the mesocolon. In mouse, rat, and dog, only the plica duodenocolica, which is regarded as the animal counterpart of the superior duo­denal fold in human, was identified, and other folds or fossae were not observed, probably because the duodenum was not fixed to the parietal peritoneum in those animals. Transection of the plica duodenocolica could return the normally rotated intestine back to the state of non-rotation in rat. Conclusions: This study showed the anatomical similarities and dissimilarities of the duodenojejunal flexure among the mammals. Anatomical knowledge of the area is useful for duodenal and pancreatic surgeries, and for animal studies about the duodenum. (Folia Morphol 2018; 77, 2: 286–292

    Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A

    Get PDF
    Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4′-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate

    Expanding the Applicability of the Metal Labeling of Biomolecules by the RIKEN Click Reaction: A Case Study with Gallium-68 Positron Emission Tomography

    Get PDF
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Radiolabeled biomolecules with short half-life times are of increasing importance for positron emission tomography (PET) imaging studies. Herein, we demonstrate an improved and generalized method for synthesizing a [radiometal]-unsaturated aldehyde as a lysine-labeling probe that can be easily conjugated into various biomolecules through the RIKEN click reaction. As a case study, 68Ga-PET imaging of U87MG xenografted mice is demonstrated by using the 68Ga-DOTA-RGDyK peptide, which is selective to αVβ3 integrins

    Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity

    Get PDF
    Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression

    Mechanical adaptation of trabecular bone morphology in the mammalian mandible

    Get PDF
    Alveolar bone, together with the underlying trabecular bone, fulfils an important role in providing structural support against masticatory forces. Diseases such as osteoporosis or periodontitis cause alveolar bone resorption which weakens this structural support and is a major cause of tooth loss. However, the functional relationship between alveolar bone remodelling within the molar region and masticatory forces is not well understood. This study investigated this relationship by comparing mammalian species with different diets and functional loading (Felis catus, Cercocebus atys, Homo sapiens, Sus scrofa, Oryctolagus cuniculus, Ovis aries). We performed histomorphometric analyses of trabecular bone morphology (bone volume fraction, trabecular thickness and trabecular spacing) and quantified the variation of bone and tooth root volumes along the tooth row. A principal component analysis and non-parametric MANOVA showed statistically significant differences in trabecular bone morphology between species with contrasting functional loading, but these differences were not seen in sub-adult specimens. Our results support a strong, but complex link between masticatory function and trabecular bone morphology. Further understanding of a potential functional relationship could aid the diagnosis and treatment of mandibular diseases causing alveolar bone resorption, and guide the design and evaluation of dental implants
    corecore