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Abstract 16 

Alveolar bone, together with the underlying trabecular bone, fulfils an important role in providing 17 

structural support against masticatory forces. Diseases such as osteoporosis or periodontitis cause 18 

alveolar bone resorption which weakens this structural support and is a major cause of tooth loss. 19 

However, the functional relationship between alveolar bone remodelling within the molar region and 20 

masticatory forces is not well understood. This study investigated this relationship by comparing 21 

mammalian species with different diets and functional loading (Felis catus, Cercocebus atys, Homo 22 

sapiens, Sus scrofa, Oryctolagus cuniculus, Ovis aries). We performed histomorphometric analyses 23 

of trabecular bone morphology (bone volume fraction, trabecular thickness and trabecular spacing) 24 

and quantified the variation of bone and tooth root volumes along the tooth row. A principal 25 

component analysis and non-parametric MANOVA showed statistically significant differences in 26 

trabecular bone morphology between species with contrasting functional loading, but these 27 

differences were not seen in sub-adult specimens. Our results support a strong, but complex link 28 

between masticatory function and trabecular bone morphology. Further understanding of a potential 29 

functional relationship could aid the diagnosis and treatment of mandibular diseases causing alveolar 30 

bone resorption, and guide the design and evaluation of dental implants.                 31 
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Introduction 32 

Alveolar bone encloses the tooth roots to provide an attachment site for the periodontal ligament and 33 

thus secure anchorage of the teeth. In addition, alveolar bone and the underlying trabecular bone 34 

provide structural support against the mechanical loads induced during mastication. Both alveolar 35 

and trabecular bone undergo continuous remodelling and optimization in response to these 36 

mechanical loads in order to maintain strength and prevent tissue damage1. However, this 37 

remodelling process can be affected by common diseases such as osteoporosis2,3 and periodontitis4, 38 

which cause a decrease in trabecular bone volume5 and a reduction in height of the alveolar ridge6. 39 

This reduced structural support can lead to instability of the teeth and eventually tooth loss. Tooth 40 

loss is often followed by an irreversible process of further alveolar bone resorption that spreads 41 

throughout the alveolar ridge7, increasing the risk of further tooth loss. The loss of teeth not only 42 

produces subsequent difficulties in chewing but has also been reported to have a negative impact on 43 

oral health8–10. 44 

In an aging population, alveolar bone resorption has the potential to become a major future 45 

healthcare problem. For example, Frencken et al.11 reported that approximately 10% of the global 46 

population are affected by severe periodontitis, with dental care accounting for 5 – 10% of the 47 

expenditure in high-income industrialised countries12. Current treatments include dental implants 48 

and dentures to replace lost teeth, and although chewing ability is improved, they do not reverse the 49 

bone resorption process13. In addition, dentures are limited in their ability to replace the functionality 50 

of natural teeth, which has significant impact on the quality of life of the patient. The use of 51 

bisphosphonates has been reported to inhibit the rate of resorption in the case of periodontitis14–16, 52 

while the reduced alveolar height has been corrected using bone grafts17–19. However, in order to 53 

establish the cause of alveolar bone resorption and effective treatment strategies, it is essential to 54 

understand the influence of masticatory forces upon bone remodelling within the mandible.  55 

Experimental studies have observed a functional relationship between the masticatory forces and 56 

alveolar bone remodelling in rats. For example, swopping to a soft-food diet induces a reduction in 57 

masticatory forces and has been accompanied by a decrease in alveolar bone volume20,21. 58 

Conversely, application of a bite block, which exerted a low continuous force along the molar row, 59 

has also been attributed to an increase in the thickness of the cortex within the alveolar process20. 60 

Milne et al.22 reported that osteopenia occurred with the application of an orthodontic device which 61 

caused stress shielding and a reduction in occlusal loading. In addition, the structural characteristics 62 

of alveolar bone have also been observed to alter during molar eruption within pigs23. Despite the 63 

potential use of this functional relationship to reduce alveolar bone resorption through loading of 64 

orthodontic devices24 or masticatory muscle exercises, this complex interaction is still not fully 65 

understood25. 66 
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The remodelling of mandibular bone has been proposed to follow the “mechanostat” model of bone 67 

regulation26,27, whereby bone is either formed or resorbed (i.e. remodelled) in response to 68 

mechanical strains induced by external forces, and indeed the morphologies of the cortex within the 69 

human corpus and symphysis have been linked to strains generated by mastication28–31. However, 70 

Lad et al.32 observed evidence of bone remodelling in regions of a cercopithecoid mandible which 71 

are known to experience relatively low strains. Thus, previous attempts to understand the link 72 

between bone remodelling and mechanical strain are contradictory. In addition, these observations 73 

are limited to the external morphology, leaving the link between masticatory forces and underlying 74 

trabecular bone morphology within the mandible to be explored.   75 

The trabecular bone in the post-canine region is of particular interest as this is generally where the 76 

highest masticatory loads are found. Histomorphometric analyses have characterised the trabecular 77 

architecture of the molar region within both the human maxilla33,34 and mandible34–37. Ontogenetic 78 

development of the mandible has also been analysed, providing detailed information regarding the 79 

change in architecture and mineralisation of trabecular bone between pre- and neo-natal pigs38,39. 80 

This re-organisation of trabeculae in the corpus is reported to correspond to the onset of mechanical 81 

loading38. Liu et al.40 observed that any disruption of normal occlusal function can lead to changes in 82 

trabecular structure in the rat mandible. Although such histomorphometric studies suggest a 83 

functional relationship exists between remodelling of the molar trabecular bone and masticatory 84 

forces, they are limited to the analysis of a single species. Despite its potential to further our 85 

understanding of molar bone remodelling, a comparison of the trabecular architecture between 86 

different species has yet to be attempted. 87 

Differences in masticatory loads between species are reflected in the morphology of the teeth and 88 

temporomandibular joints (TMJs) in mammals. For instance, carnivores have blade-like molars with 89 

TMJs that limit lower jaw motion to the sagittal plane, enabling them to cut through meat41. In 90 

contrast, herbivores have molars with flat occlusal surfaces and TMJs that permit transverse 91 

movements of the lower jaw, enabling them to grind their food42. Therefore, the aforementioned 92 

functional relationship would suggest that the trabeculae adjacent to molars in carnivores will be 93 

preferentially aligned to facilitate vertical load transfers, while they will be optimised to resist shear 94 

forces in herbivores. In addition to differences between species, there are functional differences 95 

between post-canine teeth within a species. For example, the premolar teeth in the lower jaw of the 96 

rabbit have vertically aligned roots, whereas the molar roots have a posterio-lateral orientation43. 97 

This suggests different occlusal forces in the molar versus the premolar region, and may lead to 98 

varying trabecular structures along the post-canine tooth row.  99 

This study investigated the relationship between masticatory loads and the internal bone architecture 100 

around the tooth sockets within the post-canine region in mammalian species with very different 101 

diets and molar functions. The species analysed were the cat (Felis catus), sooty mangabey 102 
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(Cercocebus atys), human (Homo sapiens), domestic pig (Sus scrofa), wild European rabbit 103 

(Oryctolagus cuniculus) and domestic sheep (Ovis aries). Molar shape was used as a proxy for 104 

functional loading, specifically: blade-shaped molars for shearing in specialised carnivores (cat)44; 105 

bilophodont molars which, due to wear, possess flattened cusps and ring shaped enamel ridges 106 

(mangabey) and simple bunodont molars with low rounded cusps (human and pig), which are suited 107 

for crushing and grinding45–47; and high crowned selenodont (sheep) and lophodont (rabbit) molars 108 

with ridges, primarily for grinding as part of an herbivorous diet42,44 (see Fig. 1). Consequently, these 109 

species exhibit a variety of feeding behaviours, for example mastication in the cat is dominated by 110 

vertical jaw movements (with slight medio-lateral movements) which enables food to be sliced41,48. 111 

In contrast, pigs process food through bilateral biting, with a more pronounced medial jaw 112 

movement in order to pierce, crush and grind food particles45,49,50. However, their jaw movements 113 

are irregular between consecutive bite cycles, sometimes moving laterally or even without any 114 

transverse movement49. Masticatory patterns of the human and mangabey are also known to be 115 

influenced by material food properties, with the mangabey displaying increased vertical but lower 116 

medio-lateral jaw excursions when processing harder foods51. The effects on human mastication has 117 

been shown to be more variable52–54. Rabbit mastication is typical of other herbivores, with a marked 118 

medio-lateral jaw movement in order to crush and grind food positioned between opposing 119 

transverse ridges of the upper and lower molars42,55,56. However, sheep mastication is suggested to be 120 

different and has been likened to a cutting process, characterised by compression followed by 121 

shearing movements, rather than solely a grinding action57,58. 122 

In the first instance we performed two histomorphometric analyses to test the following hypotheses: 123 

species with different functional loading on their post-canine teeth will have statistically significant 124 

differences in trabecular structures (Hypothesis 1); and, species with similar functional loading on 125 

their post-canine teeth will not have statistical significant difference in trabecular structures 126 

(Hypothesis 2).  127 

There is evidence to suggest that some species within this selection utilise different molars during 128 

the processing of food. For example, the mangabey is reported to bite hard seeds near the P4 - M1 129 

region59,60, suggesting different structural adaptations of the internal bone may exist between this 130 

region and that of the M1 – M3 region. Similarly, the premolar and molar root alignment in the rabbit 131 

could suggest differing functional loading in the two regions43. Therefore, the study included a 132 

further histomorphometric analysis that tested the hypothesis; internal bone volume will vary along 133 

the post-canine tooth row in species with different functional loads on the premolar and molar teeth 134 

(Hypothesis 3). 135 

Allometry is an important consideration when investigating the variation of histomorphometric 136 

traits61 and is known to influence the morphometry of the primate and sheep mandible62,63. Thus, due 137 

to the differing mandibular sizes of the species analysed, allometry was also considered in this study.  138 
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Results 139 

Analysis of trabecular architecture    140 

A principal component analysis (PCA) of the bone volume (BV/TV, BV = bone volume, TV = total 141 

volume), trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp) for the bone between the roots 142 

of two adjacent teeth (RTT) showed that histomorphometric variance (var.) could be summarised by 143 

the first two principal components (PC) vectors (PC1 explained 68.68% var. and PC2 29.93% var.). 144 

The scatterplot showed the cat and the rabbit to be considerably distinct from all the other species 145 

(Fig. 2(a)), while overlap occurred between the pig and mangabey. The sheep overlapped with both 146 

the mangabey and human. PC1 was largely correlated with Tb.Sp (positive correlation) and BV/TV 147 

(negative correlation), while PC2 was positively correlated with Tb.Th (Fig. 2(b)).  148 

Non-parametric MANOVA demonstrated that the cat and the rabbit were both significantly different 149 

from all the other species in their histomorphometric parameters (Table 1). Mangabey was not 150 

significantly different from either the pig or sheep, while there was also no difference between the 151 

sheep and human.  152 

A PCA for the trabecular architecture of the bone between the roots of a single tooth (RST) also 153 

showed that histomorphometric var. could be summarised by the first two PC vectors (PC1 154 

explained 59.81% var. and PC2 33.27% var.). The scatterplot displayed in Fig. 3(a) showed less 155 

separation of the species, when compared to the observations in the RTT bone. The cat was the only 156 

species that separated completely from a large cluster, in which the sheep specimens overlapped 157 

with all the other species. PC1 had a large positive correlation with Tb.SP, and PC2 was 158 

predominately positively correlated with Tb.Th (Fig. 3(b)). BV/TV did not correlate strongly with 159 

either component.  160 

A non-parametric MANOVA performed on the RST confirmed the separation of the cat, and to a 161 

lesser extent the mangabey, which was significantly different from the pig and human (Table 2). 162 

There was no statistical difference between the pig and human, while the sheep was not significantly 163 

different from the human, pig or mangabey. 164 

The impact of allometry was investigated via non-parametric correlation (due to non-normality of 165 

data) between mandibular length and the trabecular parameters. Within the RTT dataset, mandibular 166 

length had no significant impact on PC1 (rspearman = -0.16, p = 0.18) or PC3 (p = 0.32), but it did 167 

impact on PC2 (rspearman = 0.73, p < 0.005). Within the RST dataset, mandible length correlated 168 

positively with PC1 (rspearman = 0.5911, p < 0.001) and negatively with PC3 (rspearman = -0.47448, p < 169 

0.001) but not with PC2 (p = 0.0069). 170 

Analysis of internal bone and tooth root volume  171 
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Volumes of interest (VOI) were created which captured the maximum volumes of internal bone and 172 

tooth root when progressing in an anterio-posterior direction through the molar region, without 173 

encroaching the border of the cortex. These VOI tapered and curved to follow the form of the molar 174 

region (for further details of the VOI construction see Materials and Methods). Intra-specific 175 

analysis of the premolar and molar volumes of interest (VOI) revealed the rabbit to contain relatively 176 

consistent BV/TV within the superior, middle and inferior regions (Fig. 4). The magnitudes of 177 

BV/TV were also found to be similar between the premolar and molar VOI (typically ~10%). A 178 

similar BV/TV was found between the three regions in the molar VOI of the sheep, although the 179 

premolar VOI displayed much greater variance. However, a general trend of decreasing BV/TV 180 

moving inferiorly through the corpus was observed in all other species, with the exception of the 181 

mangabey, where the BV/TV within the inferior region was similar to that of the superior region 182 

(~30 - 35%).   183 

Inter-specific analysis showed that the BV/TV magnitudes for the rabbit and sheep were typically 184 

between ~10 - 20% in all regions (with the exception of the sheep premolar VOI in the superior 185 

region) (Fig. 4). Such consistency was not observed in any other species, for example both the pig 186 

and human displayed decreasing BV/TV moving inferiorly through the corpus (in both premolar and 187 

molar VOI).  188 

Intra-specific analysis of the tooth root volume fraction (RV/TV, RV = tooth root volume, TV = 189 

total volume) showed that the magnitudes within the three separate areas were generally similar 190 

between the premolar and molar VOI, within all species expect the sheep (Fig. 4). The mangabey 191 

and rabbit were the only species to display a RV/TV within the inferior region of the premolar VOI, 192 

indicating they have the longest premolar tooth roots (in relation to the height of the mandibular 193 

corpus). The rabbit and sheep contain the longest molar tooth roots.   194 

The impact of allometry on this analysis was again investigated via non-parametric correlation 195 

between mandibular length and the calculated parameters. Size had no significant influence on 196 

BV/TV for the medium and inferior premolar VOI (rspearman = 0.17, p = 0.22 and rspearman  = -0.23, p = 197 

0.088, respectively) but it significantly impacted the superior premolar VOI (rspearman = 0.60, p < 198 

0.001). In the case of BV/TV for the molar VOI, there was a significant correlation between size and 199 

superior and medium VOI (rspearman = 0.49, p < 0.001 and rspearman = -0.50, p < 0.001, respectively) but 200 

not with the inferior VOI (rspearman = -0.16, p = 0.24).  201 

Allometry had a significant influence on the RV/TV in all the premolar and molar VOI (P < 0.01 in 202 

all instances), with the greatest effect on the premolar VOI (rspearman = -0.98, -0.93 and -0.64 for 203 

superior, medium and inferior respectively) when compared to molar VOI (rspearman = -0.79, -0.47 and 204 

-0.29 for superior, medium and inferior respectively). 205 



 
 

8

Discussion  206 

This is the first study to investigate the relationship between the internal architecture of the 207 

mandibular molar region and mastication through a comparison of the trabecular structure of 208 

mammalian species with different diets and molar function (e.g. grinding versus crushing or vertical 209 

cutting/shearing) (Fig. 1). Due to the complexity of determining the exact functional loading in each 210 

of the species analysed, which often requires complex computational modelling43, this study used 211 

molar shape as a proxy for functional loading.  212 

A PCA of the trabecular bone within the RTT and RST bone demonstrated that the cat, mangabey, 213 

human and rabbit (i.e. all species that were represented by specimens with adult dentition) form 214 

separate groups from each other within the morphospace (Fig. 2(a) and Fig. 3(a)). Non-parametric 215 

MANOVA confirmed that a statistically significant difference in trabecular morphology exists 216 

between these species (Table 1 and Table 2). This confirms that species with different functional 217 

loading contain contrasting trabecular architectures (Hypothesis 1). Although there is separation 218 

between the mangabey and human (species that exhibit both crushing and grinding), this could be 219 

related to the specialisation of the mangabey in hard object feeding46. This will generate larger 220 

vertical forces when compared to the human, whose mastication is adapted to process a diverse 221 

range of foods. 222 

This finding is consistent with the “mechanostat” theory of bone regulation26,27, for example 223 

mastication through crushing food items will invoke a predominately vertical force transfer through 224 

the tooth root and surrounding alveolar bone. In contrast, mastication through grinding food items 225 

will transfer additional horizontally directed forces through the alveolar process. Consequently, as 226 

trabeculae are suggested to align to the principal strains associated with mechanical forces64,65, 227 

differing structures will be created by the two modes of functional loading. This is reflected by the 228 

PCA results for the RTT bone, which show that the cat is characterised by a high bone volume 229 

comprising of thin, closely spaced trabeculae, whereas the human contains a denser population of 230 

thicker, well-spaced trabeculae (Fig. 2(a)).  231 

These observations are supported by some experimental studies of the functional relationship 232 

between masticatory forces and molar trabecular bone. For example, Lui et al.40 reported that 233 

structural changes in molar trabeculae were instigated by an appliance which reduced occlusal 234 

stimuli, within the rat. However, this has not been observed consistently, with Mavropoulos et al.20 235 

reporting that no significant adaption of the trabecular structure was found with a bite block that 236 

exerted a low continuous force within the same species. Similarly, although trabecular adaptation 237 

was observed when inhibiting load transfer through molar extraction within the growing pig, the 238 

changes were not found to be significant23. However, it has been suggested that trabecular adaption 239 

may only be observed when mastication forces are applied in short bursts, followed by a recovery 240 
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period20, and/or after a sufficient time frame23, which possibly accounts for these contrasting 241 

observations to this study.  242 

Contrasting trabecular structures within the molar region have also been observed between soft and 243 

hard food eaters within a single species20,21,23. However, despite this link between diet and molar 244 

morphology, it is not possible to interpret our results in terms of adaptations to specific diets. 245 

Although mangabey’s have a molar morphology capable of crushing their stress resistant food46, it is 246 

not possible to determine a single soft/hard food diet for all of the species analysed. For example, the 247 

rabbit is known to feed on a diet containing a mixture of both soft and hard foods42.   248 

Despite separating species with contrasting functional loading, the PCA of the RTT and RST bone 249 

failed to group species with similar functional loading (Fig. 2(a) and Fig. 3(a)). Furthermore, non-250 

parametric MANOVA reported a statistical significant difference between the RTT trabecular 251 

structure of the sheep and rabbit (Table 1), although there was no significant difference between the 252 

mangabey and pig in the RTT bone, and between the pig and human within the RST bone (Table 2). 253 

This suggests rejection of Hypothesis 2, but the hypothesis is dependent on species with similar 254 

molar functions producing comparable masticatory loads transfers during mastication. This is not 255 

certain to be the case and indeed other factors may influence trabecular adaptation, for instance 256 

mandibular torsion has been suggested to influence alveolar bone growth in pigs23. Therefore, 257 

Hypothesis 2 cannot be rejected with confidence with the current data. 258 

The pig and sheep were the only species to form overlays within the PCA, and often overlapped 259 

more than one species; for example the sheep was positioned over the data of the mangabey, human 260 

and pig within the RST bone (Fig. 3(a)). This could be related to ontogeny since these specimens 261 

were obtained from an agricultural source, and as a result the pig and sheep specimens were of sub-262 

adult age (as reflected by their dentition). The trabecular structure within the corpus has been found 263 

to alter during the development of dentition in pigs23, therefore the analyses employed here are likely 264 

to capture a mixture of partially and fully optimized internal bone. 265 

Analysis of internal bone structures did not show a variation in BV/TV alone the post-canine row in 266 

species which are predicted to have differing premolar and molar force transfers, therefore 267 

Hypothesis 3 is rejected. Although the literature reports that the mangabey uses the P4 - M1 region to 268 

bite hard seeds59,60, comparative regions for the premolar and molar VOI showed similar BV/TV 269 

values (Fig. 4).  Similarly, despite the root alignment in the rabbit suggesting differing functional 270 

premolar and molar loading43, once again BV/TV values were consistent along the post-canine row. 271 

The pig and sheep were the only species to display different premolar and molar BV/TV 272 

magnitudes, although again this may be related to the lack of adult dentition in the analysed 273 

specimens.  274 
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The mangabey did not display a consistent reduction in BV/TV through the mandible depth, with a 275 

relatively high value in the inferior region compared to that of the superior region (Fig. 4). This is a 276 

possible indication of a hard food diet, as some species which crush hard foods have a thicker cortex 277 

at the base of the mandibular ramus31,66, which would be advantageous for resisting the high forces 278 

generated during mastication of hard food items. A trabecular network within the inferior region of 279 

the mangabey mandibular corpus would provide additional structural support against such loading.  280 

This study has observed a link between the organisation of the molar trabecular and functional 281 

loading within the species that were represented by specimens with adult dentition (cat, mangabey, 282 

human and rabbit). A clear link could be not be determined for the sub-adult species analysed (pig 283 

and sheep), but this possibly highlights the complexity of this relationship.  It should be noted that 284 

this study used functional loading as a reflection of molar function, rather than solely based on 285 

masticatory adaptions (as in many experimental studies). For example, pigs and rabbits have been 286 

shown to follow similar mandibular excursions during chewing42,45,49,55,56, therefore based on 287 

masticatory pattern, it might be presumed that the molar trabecular structures within the two species 288 

will be similar. However, as their molar morphology suggests, their diet consists of different food 289 

consistencies, and so the resulting difference in occlusal force transfers will produce contrasting 290 

trabecular structures (as was observed). As this study is an inter-species histomorphometric analysis 291 

it is important to note that the observed relationships could be influenced by phylogenetic signal 292 

present in the data. Due to the low sample size it is impossible to employ comparative methods 293 

within a robust statistical framework (see Blomberg et al.67), and only future work based on more 294 

interspecific data might clarify such an issue.  The results presented support strong differences 295 

between species belonging to the same orders in particularly primates for both the RST and RTT 296 

bone values (Table 1 and Table 2). Artiodactyls (sheep and pig) showed no differences in the RST 297 

bone values but strong and significant differences in the RTT. 298 

In conclusion, this paper has observed a link between the internal bone morphology within the molar 299 

region and functional loading on the molars. Statistical significance in trabecular architecture was 300 

observed between species with contrasting load transfers, with the divergence between species with 301 

similar loading possibly being attributed to inclusion of individuals with sub-adult dentition within 302 

the analysis. The validity and strength of this link could be explored further through computational 303 

modelling to predict the forces generated by differing masticatory patterns, and calculating the 304 

corresponding mechanical strains. Developing our understanding of this relationship has a direct 305 

clinical application in the investigation of the cause and potential treatment of periodontitis, along 306 

with other mandibular diseases. This knowledge can also aid the design and evaluation of dental 307 

implants, particularly in terms of implant stability, through furthering our understanding of how 308 

mandibular bone remodels to altered masticatory forces post-implantation.   309 
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Materials and Methods 310 

Analysis of trabecular architecture   311 

All specimens contained adult dentition (with the exception of the pig and sheep), although their 312 

exact ages were unknown. Juvenile pig and sheep specimens were agriculturally sourced, and the 313 

rabbits were obtained from culling for routine land management. Adult cat specimens were obtained 314 

from the Institute of Veterinary Science, University of Liverpool, while young adult human 315 

mandibles were obtained from the Scheuer collection (University of Dundee, Scotland). The adult 316 

mangabey used in this study is from a collection curated at Hull York Medical School (HYMS) and 317 

has been used previously in developmental studies of craniofacial growth47,68,69. None of the 318 

specimens analysed were sacrificed for the purpose of this study.  319 

The left and right side of each mandible (hereafter referred to as a hemi-mandible) were scanned 320 

with an X-Tek HMX 160 µCT scanner (X-Tek Systems Ltd, UK) using spatial resolutions ranging 321 

from 16.6 to 96.0µm to capture the trabecular bone morphology (Table 3). In instances of visible 322 

damaged to the molar region on either hemi-mandible, the affected hemi-mandible was omitted from 323 

further analysis. The range of resolutions was a result of the different sizes of hemi-mandibles and 324 

sizes of the VOI. A sensitivity test was performed to investigate whether this variability affected the 325 

histomorphometric analysis of the trabecular architecture. This consisted of scanning one hemi-326 

mandible of each species at the minimum and maximum resolutions shown in Table 3, and creating 327 

comparative RTT and RST VOI (further details of the VOI construction are described below). This 328 

was performed along the post-canine row (i.e. creating VOI in both the premolar and molar regions). 329 

A subsequent histomorphometric analysis concluded that there was no significant difference in the 330 

calculated bone parameters between the two scan resolutions. This finding was consistent for all 331 

species and confirmed that differences in scan resolutions did not affect the histomorphometric 332 

analysis.       333 

Scan data were imported into the three-dimensional (3D) image processing software AVIZO v6.3 334 

(Visualization Sciences Group, Inc. USA) as a stack of TIFF images. The image stacks were 335 

segmented using a ray casting algorithm70 which differentiated bone and teeth from non-bone/teeth 336 

material, using the grey-level gradient of the image. The teeth and bone were subsequently 337 

segmented manually into separate materials, creating a 3D model of each scan, which consisted of 338 

the external and internal architecture of the bone, together with the premolar and molar teeth (Fig. 1 339 

& Fig. 5). Each 3D model was subsequently reoriented so that the occlusal plane was horizontal.  340 

This study analysed the trabecular architecture in the RTT and RST bone. The two types of bone 341 

were segmented manually in each hemi-mandible by selecting the bone located within the medio-342 

lateral borders of the respective tooth roots, when viewed in the transverse plane (as illustrated in 343 

Fig. 5(a)). By repeating this process for each transverse slice down the length of the tooth root, a 344 

series of volumes were created (Fig. 5(b) and (c)). This process was performed along the post-canine 345 
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row for each hemi-mandible, except in locations of missing or partially erupted teeth, or where there 346 

was visible damage to the tooth crown, tooth root or bone. In order to investigate the trabecular 347 

structure, smaller VOI were then defined within the preselected inter-root and intra-root bone 348 

volumes by selecting the middle 60% of each (Fig. 5(b) and (c)). Larger VOI were not used to avoid 349 

any artefacts from analysing the bone at the superior and inferior borders. Consequently, species 350 

with larger numbers of premolars and molars yielded a greater total number of RTT and RST VOI 351 

(Table 3). In addition, only RTT VOI could be created within the rabbit due to their single rooted 352 

post-canine teeth.  353 

Each VOI was exported as a stack of TIFF images and imported into ImageJ v1.48, (National 354 

Institute of Health, USA)71, where a histomorphometric analysis was performed using the plugin 355 

BoneJ72 to measure the parameters of BV/TV, Tb.Th and Tb.Sp.  356 

Non-parametric Mann-Whitney analyses demonstrated that there were rarely significant differences 357 

in the histomorphometric parameters between the left and right VOI for each specimen. Therefore, 358 

the data for the left and right hemi-mandibles were combined for each specimen, and then averaged 359 

to create a single premolar and molar value for each trabecular parameter. This was performed 360 

separately for the RTT and RST datasets. As the analysis also showed few instances of significant 361 

difference between premolar and molar VOI for each specimen, both premolar and molar values 362 

were included in subsequent analyses.     363 

Both univariate and multivariate statistics were employed to explore the intra- and inter-specific 364 

variation of the trabecular parameters: non-parametric Mann-Whitney to test for intra-specific 365 

differences; non-parametric MANOVA to test for inter-specific differences; and a PCA to interpret 366 

the variation and relationship between the different parameters. All variables were not normally 367 

distributed and our non-parametric approach was conservatively supported by permutation tests (via 368 

9,999 permutations). Data analyses were performed in statistical software packages PAST73 and R74. 369 

Analysis of internal bone and tooth root volume  370 

A second histomorphometric analysis was performed to investigate the variation in the volume of 371 

the internal bone and tooth roots throughout the mandibular body, in particular the variation along 372 

the post-canine tooth row and in the superio-inferior direction. The analysis required full dentition in 373 

the hemi-mandible, therefore it was only performed on a subset of the original dataset in Table 3, 374 

specifically: 4 cat hemi-mandibles (from 4 individuals); 8 mangabey hemi-mandibles (from 4 375 

individuals); 8 human hemi-mandibles (from 4 individuals); 11 pig hemi-mandibles (from 7 376 

individuals); 11 rabbit hemi-mandibles (from 6 individuals); 12 sheep hemi-mandibles (from 6 377 

individuals). 378 
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The hemi-mandibles were initially viewed in the sagittal plane and a region created using transverse 379 

slices that represented the anterior border of the first premolar, and the posterior border of the last 380 

molar (Fig. 6(a)). Additional transverse slices were then identified in between these borders in order 381 

to create 10 equally sized sub-regions. Each of these slices were subsequently viewed in the 382 

transverse plane and three equal regions (termed superior, middle and inferior region) created 383 

between the superior and inferior borders of the mandible (Fig. 6(b)). Within the centre of each 384 

region a circular area was defined with the largest diameter that did not encroach the medial and 385 

lateral cortex. Consequently, as the size of the mandible varied within each transverse slice, the size 386 

of the circular area was different within each region (Fig. 6(b)). An interpolation function within 387 

AVIZO was utilised to create an extruded VOI between each of the circular areas in the superior, 388 

middle and inferior regions (Fig. 6(c)). Although this successfully excluded the medial and lateral 389 

cortex from each VOI, the inter-root bone in the anterio-posterior direction was included. This 390 

method enabled construction of VOI which followed curved trajectories in three dimensions, and 391 

widened/tapered through thicker/thinner sections of the mandible. This was performed through the 392 

whole tooth row in the majority of the species, with the exception of the mangabey and human 393 

where, due to the presence of partially erupted 3rd molars, the tooth row was defined between the 1st 394 

premolar and 2nd molar.   395 

The VOI were divided into a premolar and molar VOI based on the borders of the premolar and 396 

molar roots when viewed in the sagittal plane. The parameters of BV/TV and RV/TV were then 397 

calculated in each VOI within AVIZO.  398 
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Fig 1. 3D visualisations of the post-canine mandibular corpus of the species included in the 591 

histomorphometric analysis. These species display diverse molar shapes and functions, namely: (a) 592 

molars with flattened or rounded cusps – mangabey, human and pig; (b) blade-shaped molars – cat; 593 

(c) flattened molars with ridges – rabbit and sheep. 594 

Fig 2. Results of (a) the PCA of three trabecular parameters within the RTT bone, and (b) the 595 

correlation of the three measures to principal components 1 (PC1) and 2 (PC2). 596 

Fig 3. Results of (a) the PCA of three trabecular parameters within the RST bone, and (b) the 597 

correlation of the three measures to principal components 1 (PC1) and 2 (PC2).   598 

Fig 4. The BV/TV and RV/TV calculated within the superior, middle and inferior regions 599 

throughout the premolar (shown as solid bars) and molar (shown as hatched bars) regions. The error 600 

bars indicate ±1 standard deviation of the mean value. 601 

Fig 5. Segmentation of RTT and RST VOIs, showing: (a) mapping of the largest area of bone 602 

between the medio-lateral borders of the tooth root; (b) volumetric representation of the RST bone 603 

along the length of the tooth root, and creation of a VOI containing the middle 60% of the bone in 604 

the sagittal plane; (c) volumetric representation of the RTT bone along the length of the tooth root, 605 

and creation of the VOI in the same manner as described in (b); and, (d) the creation of RTT VOI in 606 

other species.  607 

Fig 6. Methodology used to calculate the volume fractions of bone and tooth material throughout the 608 

post-canine mandibular body. Construction of extruded volumes through the tooth row, showing: (a) 609 

division of the tooth row into 10 equally spaced regions using transverse slices between the anterior 610 

border of the first premolar, and the inferior borders of the last molar (black lines); (b) division of 611 

each transverse slice identified in part (a) into three equally spaced regions between the superior and 612 

inferior borders of the bone. A circular area was defined in the centre of each region, with the largest 613 

diameter that did not encroach the medial and lateral cortex; and, (c) interpolation between the areas 614 

circular areas defined in part (b) to create extruded VOI which followed curved trajectories through 615 

the superior, middle and inferior regions.    616 
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 617 
 618 

 Cat Mangabey Human Pig Rabbit Sheep 

Cat - 0.008 0.002 0.002 0.002 0.002 

Mangabey  - 0.003 0.345 0.002 0.104 

Human   - 0.002 0.003 0.651 

Pig    - 0.002 0.003 

Rabbit     - 0.005 

Sheep      - 

Table 1. The results of a non-parametric MANOVA to calculate statistical significance 619 

between the species within the RTT bone (p < 0.05). 620 

  621 
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 622 

 Cat Mangabey Human Pig Sheep 

Cat - 0.003 0.007 0.001 0.002 

Mangabey  - 0.008 0.008 0.191 

Human   - 0.084 0.098 

Pig    - 1 

Sheep     - 

Table 2. The results of a non-parametric MANOVA to calculate statistical significance 623 

between the species within the RST bone (p < 0.05). 624 

  625 
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 No. hemi-
mandibles (No. of 

µCT Scan 
resolution (µm) 

No. of RTT 
VOI 

No. of RST 
VOI 

Cat 7 (5) 19.2 - 48.6 13 19 

Cercocebus 12 (6) 57.1 - 71.1 42 52 

Human 10 (5) 74.9 - 79.5 30 20 

Pig 12 (7) 69.5 - 96.0 36 48 

Rabbit 12 (7) 16.6 - 47.4 48 - 

Sheep 12 (6) 45.5 - 84.8 36 36 

Table 3. The number of hemi-mandibles analysed per species, and the total number of RTT 626 

and RST VOI used in analysis of the trabecular architecture. The hemi-mandibles were 627 

scanned using a range of resolutions, which were subject to a sensitivity test to ensure that 628 

they did not affect the histomorphometric analyses of the trabecular bone. Note that no RST 629 

VOI was calculated for the rabbit as post-canine rabbit teeth are single-rooted. 630 
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