1,285 research outputs found

    The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra

    Full text link
    The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to ~6285 stars. The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral reduction and radial velocity correction procedures with MATISSE in order to automatically determine the stellar parameters of the FEROS spectra. Stellar atmospheric parameters (Teff, log g, [M/H] and [alpha/Fe]) were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline. 12673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of these rejected spectra were found to have broad spectral features indicating that they may be hot and/or fast rotating stars, which are not considered within the adopted reference synthetic spectra grid of FGKM stars.Comment: 28 pages, 28 figures, 9 table

    From Solar Proton Burning to Pionic Deuterium through the Nambu-Jona-Lasinio model of light nuclei

    Full text link
    Within the Nambu-Jona-Lasinio model of light nuclei (the NNJL model), describing strong low-energy nuclear interactions, we compute the width of the energy level of the ground state of pionic deuterium. The theoretical value fits well the experimental data. Using the cross sections for the reactions nu_e + d -> p + p + e^- and nu_e + d -> p + n + nu_e, computed in the NNJL model, and the experimental values of the events of these reactions, detected by the SNO Collaboration, we compute the boron neutrino fluxes. The theoretical values agree well with the experimental data and the theoretical predictions within the Standard Solar Model by Bahcall. We argue the applicability of the constraints on the astrophysical factor for the solar proton burning, imposed by helioseismology, to the width of the energy level of the ground state of pionic deuterium. We show that the experimental data on the width satisfy these constraints. This testifies an indirect measurement of the recommended value of the astrophysical factor for the solar proton burning in terrestrial laboratories in terms of the width of the energy level of the ground state of pionic deuterium.Comment: 10 pages, no figures, Late

    Scale invariant jets: from blazars to microquasars

    Get PDF
    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over \sim 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.Comment: 13 pages, 4 figures, accepted for publication in AP

    F-GAMMA: Multi-frequency radio monitoring of Fermi blazars. The 2.64 to 43 GHz Effelsberg light curves from 2007-2015

    Get PDF
    The advent of the Fermi-GST with its unprecedented capability to monitor the entire 4 pi sky within less than 2-3 hours, introduced new standard in time domain gamma-ray astronomy. To explore this new avenue of extragalactic physics the F-GAMMA programme undertook the task of conducting nearly monthly, broadband radio monitoring of selected blazars from January 2007 to January 2015. In this work we release all the light curves at 2.64, 4.85, 8.35, 10.45, 14.6, 23.05, 32, and 43 GHz and present first order derivative data products after all necessary post-measurement corrections and quality checks; that is flux density moments and spectral indices. The release includes 155 sources. The effective cadence after the quality flagging is around one radio SED every 1.3 months. The coherence of each radio SED is around 40 minutes. The released dataset includes more than 4×1044\times10^4 measurements. The median fractional error at the lowest frequencies (2.64-10.45 GHz) is below 2%. At the highest frequencies (14.6-43 GHz) with limiting factor of the atmospheric conditions, the errors range from 3% to 9%, respectively.Comment: Accepted for publication in Section: Catalogs and data of Astronomy & Astrophysic

    Minimal symmetric Darlington synthesis

    Get PDF
    We consider the symmetric Darlington synthesis of a p x p rational symmetric Schur function S with the constraint that the extension is of size 2p x 2p. Under the assumption that S is strictly contractive in at least one point of the imaginary axis, we determine the minimal McMillan degree of the extension. In particular, we show that it is generically given by the number of zeros of odd multiplicity of I-SS*. A constructive characterization of all such extensions is provided in terms of a symmetric realization of S and of the outer spectral factor of I-SS*. The authors's motivation for the problem stems from Surface Acoustic Wave filters where physical constraints on the electro-acoustic scattering matrix naturally raise this mathematical issue

    Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    Get PDF
    We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systematic monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, implying a mildly relativistic jet. The computed jet powers show very energetic flows. The radio polarisation in one case clearly implies a quiescent jet underlying the recursive flaring activity. Despite the generally lower flux densities, the sources appear to show all typical characteristics seen in blazars that are powered by relativistic jets.Comment: Accepted for publication in 4 - Extragalactic astronomy of Astronomy and Astrophysic
    corecore