81 research outputs found

    The H.E.S.S. multi-messenger program

    Full text link
    Based on fundamental particle physics processes like the production and subsequent decay of pions in interactions of high-energy particles, close connections exist between the acceleration sites of high-energy cosmic rays and the emission of high-energy gamma rays and high-energy neutrinos. In most cases these connections provide both spatial and temporal correlations of the different emitted particles. The combination of the complementary information provided by these messengers allows to lift ambiguities in the interpretation of the data and enables novel and highly sensitive analyses. In this contribution the H.E.S.S. multi-messenger program is introduced and described. The current core of this newly installed program is the combination of high-energy neutrinos and high-energy gamma rays. The search for gamma-ray emission following gravitational wave triggers is also discussed. Furthermore, the existing program for following triggers in the electromagnetic regime was extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An overview over current and planned analyses is given and recent results are presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.Peer Reviewe

    Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogeneous set of devices. Moreover, the system is required to be ready to adapt the observation schedule, on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma ray bursts. This contribution provides a summary of the main design choices and plans for building the ACTL system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure

    The On-Site Analysis of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in particular for the RTA) and the sensitivity requirements are challenging because of the large data rate, a few GByte/s. The remote connection to the CTA candidate site with a rather limited network bandwidth makes the issue of the exported data size extremely critical and prevents any kind of processing in real-time of the data outside the site of the telescopes. For these reasons the analysis will be performed on-site with infrastructures co-located with the telescopes, with limited electrical power availability and with a reduced possibility of human intervention. This means, for example, that the on-site hardware infrastructure should have low-power consumption. A substantial effort towards the optimization of high-throughput computing service is envisioned to provide hardware and software solutions with high-throughput, low-power consumption at a low-cost

    Science verification of the new FlashCam-based camera in the 28m telescope of H.E.S.S

    Get PDF
    In October 2019 the central 28m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations

    Detection of extended TeV emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs

    Science verification of the new FlashCam-based camera in the 28 m telescope of H.E.S.S.

    Get PDF
    In October 2019 the central 28 m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations

    H.E.S.S. follow-up of BBH merger events

    Get PDF
    We present here, follow-up observations of four Binary black hole BBH eventsperformed with the High Energy Stereoscopic System (H.E.S.S.) in the Very HighEnergy (VHE) gamma-ray domain during the second and third LIGO/Virgoobservation runs. Detailed analyses of the obtained data did not showsignificant VHE emission. We derive integral upper limit maps considering ageneric E2E^{-2} source spectrum in the most sensitive H.E.S.S energy intervalranging from 1 to 10 TeV. We also consider Extragalactic Background Lightabsorption effects and derive integral upper limits over the full accessibleenergy range. We finally derive upper limits of the VHE luminosity for eachevent and compare them with the expected VHE emission from GRBs. Thesecomparisons allow us to assess the H.E.S.S. gravitational wave follow-upstrategies. For the fourth GW observing run O4, we do not expect tofundamentally alter our observing strategy, and will continue to prioritize skycoverage like for the previous runs<br

    Revisiting the PeVatron candidate MGRO J1908+06 with an updated H.E.S.S. analysis

    Get PDF
    Detecting and studying galactic gamma-ray sources emitting very-high energy photons sheds light on the acceleration and propagation of cosmic rays presumably created in these sources. Currently, there are few sources emitting photons with energies exceeding 100 TeV. In this work we revisit the unidentified source MGRO J1908+06, initially detected by Milagro, using an updated H.E.S.S. dataset and analysis pipeline. The vicinity of the source contains a supernova remnant and pulsars as well as molecular clouds. This makes the identification of the primary source(s) of galactic cosmic rays as well as the nature of the gamma-ray emission challenging, especially in light of the recent HAWC and LHAASO detection of the high energy tail of its spectrum. Exploiting the better angular resolution as compared to particle detectors, we investigate the morphology of the source as well as its spectral properties
    corecore