565 research outputs found

    ECB policy and Eurozone fragility: Was De Grauwe right?

    Get PDF
    Paul De Grauwe's Eurozone fragility hypothesis states that sovereign debt markets in a monetary union without a lender-of-last-resort are vulnerable to self-fulfilling dynamics fuelled by pessimistic investor sentiment that can trigger default. We test this contention by applying an eclectic methodology to a two-year window around Mario Draghi's “whatever-it-takes” pledge that can be understood as the implicit announcement of the Outright Monetary Transactions (OMT) program. A principal components analysis reveals that the perceived commonality in default risk among peripheral and core Eurozone sovereigns increased after the announcement. An event study reveals significant pre-announcement news transmission from Spain to Italy, France, Belgium and Austria that clearly dissipates post-announcement. Country-specific regressions of CDS spreads on systematic risk factors reveal frequent days of large adverse shocks affecting simultaneously those five Eurozone countries, but only during the pre-announcement period. Altogether these findings support the fragility hypothesis and endorse the OMT program

    Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides

    Full text link
    We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd2Mo3N, Ni2Mo3C0.52N0.48, Co3Mo3C0.62N0.38, and Fe3Mo3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, being the least compressible material Fe3Mo3C, B0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials.Comment: 14 pages, 3 figures, 1 tabl

    Correlation functions in the non-relativistic AdS/CFT correspondence

    Get PDF
    We study the correlation functions of scalar operators in the theory defined as the holographic dual of the Schroedinger background with dynamical exponent z=2 at zero temperature and zero chemical potential. We offer a closed expression of the correlation functions at tree level in terms of Fourier transforms of the corresponding n-point functions computed from pure AdS in the lightcone frame. At the loop level this mapping does not hold and one has to use the full Schroedinger background, after proper regularization. We explicitly compute the 3-point function comparing it with the specific 3-point function of the non-relativistic theory of cold atoms at unitarity. We find agreement of both 3-point functions, including the part not fixed by the symmetry, up to an overall normalization constant.Comment: 32 pages, 7 figures; v2: typos corrected, references added and additional discussion about the case of compact number-direction, includes new appendix with the computations of the 2 and 3 point function for the compact number-direction case. The general results remain the same. Version published in Phys.Rev.

    Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectric A(x)Ba(1-x)Nb(2)O(6) (A: Sr,Ca)

    Full text link
    [EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to paraelelectric phase transition at 4 GPa, the light scattering produced by micro-and nano-ferroelectric domains at 3.3 eV in Ca0.28Ba0.72Nb2O6 has been probed. The direct bandgap remains virtually constant under compression with a drop of only 0.01 eV around the phase transition. Interestingly, we have also found that light scattering by the polar nanoregions in the paraelectric phase is comparable to the dispersion due to ferroelectric microdomains in the ferroelectric state. Finally, we have obtained that the bulk modulus of the ferroelectric phase of Ca0.28Ba0.72Nb2O6 is B-0 = 222(9) GPa. Published by AIP Publishing.J.R.-F. acknowledges the Spanish MINECO for the Juan de la Cierva (IJCI-2014-20513) Program and Dr. Bayarjargal from the Goethe-Universitat Frankfurt for providing the CBN28 samples. This work was supported by Spanish MINECO under Grant No. MAT2016-75586-C4-1-P/2-P. The high pressure x-ray diffraction experiments were performed at MSPD beamline at ALBA Synchrotron (Project 2016021588) with the collaboration of ALBA staff.Ruiz-Fuertes, J.; Gomis, O.; Segura, A.; Bettinelli, M.; Burianek, M.; Muehlberg, M. (2018). Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectric A(x)Ba(1-x)Nb(2)O(6) (A: Sr,Ca). Applied Physics Letters. 112(4). https://doi.org/10.1063/1.5012111S112

    Mechanical Properties Analysis of an Al-Mg Alloy Connecting Rod with Submicrometric Structure

    Get PDF
    AbstractIn spite of the fact that SPD processes considerably improve the mechanical properties of the thus processed materials, in a large number of cases, it is necessary the subsequent employment of a traditional manufacturing process, such as a forging process, in order to obtain the final shape of a specific part. Thus, in general, it is necessary to use a thermal treatment for the material before it is forged. In this research work, the measurement of the mechanical properties of an isothermally forged connecting rod is to carried out. The results obtained for an AA5754 aluminium alloy are to be compared in the case of two different starting states: after an annealing heat treatment and after having been previously ECAP deformed. It is observed an increase of 21% in the HV microhardness in relation to that attained in the connecting rod forged from the material without previous ECAP deformation

    Phase stability of lanthanum orthovanadate at high-pressure

    Full text link
    When monoclinic monazite-type LaVO4 (space group P21/n) is squeezed up to 12 GPa at room temperature, a phase transition to another monoclinic phase has been found. The structure of the high-pressure phase of LaVO4 is indexed with the same space group (P21/n), but with a larger unit-cell in which the number of atoms is doubled. The transition leads to an 8% increase in the density of LaVO4. The occurrence of such a transition has been determined by x-ray diffraction, Raman spectroscopy, and ab initio calculations. The combination of the three techniques allows us to also characterize accurately the pressure evolution of unit-cell parameters and the Raman (and IR)-active phonons of the low- and high-pressure phase. In particular, room-temperature equations of state have been determined. The changes driven by pressure in the crystal structure induce sharp modifications in the color of LaVO4 crystals, suggesting that behind the monoclinic-to-monoclinic transition there are important changes of the electronic properties of LaVO4.Comment: 39 pages, 6 tables, 7 figure

    Ideal gas matching for thermal Galilean holography

    Get PDF
    We exhibit a nonrelativistic ideal gas with a Kaluza-Klein tower of species, featuring a singular behavior of thermodynamic functions at zero chemical potential. In this way, we provide a qualitative match to the thermodynamics of recently found black holes in backgrounds with asymptotic nonrelativistic conformal symmetry.Comment: 11 page

    Aging and Holography

    Full text link
    Aging phenomena are examples of `non-equilibrium criticality' and can be exemplified by systems with Galilean and scaling symmetries but no time translation invariance. We realize aging holographically using a deformation of a non-relativistic version of gauge/gravity duality. Correlation functions of scalar operators are computed using holographic real-time techniques, and agree with field theory expectations. At least in this setup, general aging phenomena are reproduced holographically by complexifying the bulk space-time geometry, even in Lorentzian signature.Comment: 1 pdf figur

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (a) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053.Peer ReviewedArticle signat per 1223 autors/autores: J. Mailloux1, N. Abid1, K. Abraham1, P. Abreu2, O. Adabonyan1, P. Adrich3, V. Afanasev4, M. Afzal1, T. Ahlgren5, L. Aho-Mantila6, N. Aiba7, M. Airila6, M. Akhtar1, R. Albanese8, M. Alderson-Martin1, D. Alegre9, S. Aleiferis10, A. Aleksa1, A.G. Alekseev11, E. Alessi12, P. Aleynikov13, J. Algualcil14, M. Ali1, M. Allinson1, B. Alper1, E. Alves2, G. Ambrosino8, R. Ambrosino8, V. Amosov15, E.Andersson Sunden16, P. Andrew13, B.M. Angelini17, C. Angioni18, I. Antoniou1, L.C. Appel1, C. Appelbee1, S. Aria1, M. Ariola8, G. Artaserse17, W. Arter1, V. Artigues18, N. Asakura7, A. Ash1, N. Ashikawa19, V. Aslanyan20, M. Astrain21, O. Asztalos22, D. Auld1, F. Auriemma23, Y. Austin1, L. Avotina24, E. Aymerich25, A. Baciero9, F. Bairaktaris26, J. Balbin27, L. Balbinot23, I. Balboa1, M. Balden18, C. Balshaw1, N. Balshaw1, V.K. Bandaru18, J. Banks1, Yu.F. Baranov1, C. Barcellona28, A. Barnard1, M. Barnard1, R. Barnsley13, A. Barth1, M. Baruzzo17, S. Barwell1, M. Bassan13, A. Batista2, P. Batistoni17, L. Baumane24, B. Bauvir13, L. Baylor29, P.S. Beaumont1, D. Beckett1, A. Begolli1, M. Beidler29, N. Bekris30,31, M. Beldishevski1, E. Belli32, F. Belli17, É. Belonohy1, M. Ben Yaala33, J. Benayas1, J. Bentley1, H. BergsĂ„ker34, J. Bernardo2, M. Bernert18, M. Berry1, L. Bertalot13, H. Betar35, M. Beurskens36, S. Bickerton1, B. Bieg37, J. Bielecki38, A. Bierwage7, T. Biewer29, R. Bilato18, P. BĂ­lkovĂĄ39, G. Birkenmeier18, H. Bishop1, J.P.S. Bizarro2, J. Blackburn1, P. Blanchard40, P. Blatchford1, V. Bobkov18, A. Boboc1, P. Bohm39, T. Bohm41, I. Bolshakova42, T. Bolzonella23, N. Bonanomi18, D. Bonfiglio23, X. Bonnin13, P. Bonofiglo43, S. Boocock1, A. Booth1, J. Booth1, D. Borba2,30, D. Borodin44, I. Borodkina39,44, C. Boulbe45, C. Bourdelle27, M. Bowden1, K. Boyd1, I.Bozicevic Mihalic46, S.C. Bradnam1, V. Braic47, L. Brandt48, R. Bravanec49, B. Breizman50, A. Brett1, S. Brezinsek44, M. Brix1, K. Bromley1, B. Brown1, D. Brunetti1,12, R. Buckingham1, M. Buckley1, R. Budny, J. Buermans51, H. Bufferand27, P. Buratti17, A. Burgess1, A. Buscarino28, A. Busse1, D. Butcher1, E.de la Cal9, G. CalabrĂČ52, L. Calacci53, R. Calado2, Y. Camenen54, G. Canal55, B. Cannas25, M. Cappelli17, S. Carcangiu25, P. Card1, A. Cardinali17, P. Carman1, D. Carnevale53, M. Carr1, D. Carralero9, L. Carraro23, I.S. Carvalho2, P. Carvalho2, I. Casiraghi56, F.J. Casson1, C. Castaldo17, J.P. Catalan14, N. Catarino2, F. Causa12, M. Cavedon18, M. Cecconello16, C.D. Challis1, B. Chamberlain1, C.S. Chang43, A. Chankin18, B. Chapman1,57, M. Chernyshova58, A. Chiariello8, P. Chmielewski58, A. Chomiczewska58, L. Chone59, G. Ciraolo27, D. Ciric1, J. Citrin60, Ɓ. Ciupinski61, M. Clark1, R. Clarkson1, C. Clements1, M. Cleverly1, J.P. Coad1, P. Coates1, A. Cobalt1, V. Coccorese8, R. Coelho2, J.W. Coenen44, I.H. Coffey62, A. Colangeli17, L. Colas27, C. Collins29, J. Collins1, S. Collins1, D. Conka24, S. Conroy16, B. Conway1, N.J. Conway1, D. Coombs1, P. Cooper1, S. Cooper1, C. Corradino28, G. Corrigan1, D. Coster18, P. Cox1, T. Craciunescu63, S. Cramp1, C. Crapper1, D. Craven1, R. Craven1, M.Crialesi Esposito48, G. Croci56, D. Croft1, A. Croitoru63, K. Crombe51,64, T. Cronin1, N. Cruz2, C. Crystal32, G. Cseh22, A. Cufar65, A. Cullen1, M. Curuia66, T. Czarski58, H. Dabirikhah1, A.Dal Molin56, E. Dale1, P. Dalgliesh1, S. Dalley1, J. Dankowski38, P. David18, A. Davies1, S. Davies1, G. Davis1, K. Dawson1, S. Dawson1, I.E. Day1, M. De Bock13, G. De Temmerman13, G. De Tommasi8, K. Deakin1, J. Deane1, R. Dejarnac39, D. Del Sarto35, E. Delabie29, D. Del-Castillo-Negrete29, A. Dempsey67, R.O. Dendy1,57, P. Devynck27, A. Di Siena18, C. Di Troia17, T. Dickson1, P. Dinca63, T. Dittmar44, J. Dobrashian1, R.P. Doerner68, A.J.H. DonneÂŽ69, S. Dorling1, S. Dormido-Canto70, D. Douai27, S. Dowson1, R. Doyle67, M. Dreval71, P. Drewelow36, P. Drews44, G. Drummond1, Ph. Duckworth13, H. Dudding1,72, R. Dumont27, P. Dumortier51, D. Dunai22, T. Dunatov46, M. Dunne18, I. Duran39, F. Durodie51, R. Dux18, A. Dvornova27, R. Eastham1, J. Edwards1, Th. Eich18, A. Eichorn1, N. Eidietis32, A. Eksaeva44, H. El Haroun1, G. Ellwood13, C. Elsmore1, O. Embreus73, S. Emery1, G. Ericsson16, B. Eriksson16, F. Eriksson74, J. Eriksson16, L.G. Eriksson75, S. Ertmer44, S. Esquembri21, A.L. Esquisabel76, T. Estrada9, G. Evans1, S. Evans1, E. Fable18, D. Fagan1, M. Faitsch18, M. Falessi17, A. Fanni25, A. Farahani1, I. Farquhar1, A. Fasoli40, B. Faugeras45, S. Fazinic46, F. Felici40, R. Felton1, A. Fernandes2, H. Fernandes2, J. Ferrand1, D.R. Ferreira2, J. Ferreira2, G. FerrĂČ53, J. Fessey1, O. Ficker39, A.R. Field1, A. Figueiredo2, J. Figueiredo2,30, A. Fil1, N. Fil1,20, P. Finburg1, D. Fiorucci23, U. Fischer31, G. Fishpool1, L. Fittill1, M. Fitzgerald1, D. Flammini17, J. Flanagan1, K. Flinders1, S. Foley1, N. Fonnesu17, M. Fontana40, J.M. Fontdecaba9, S. Forbes1, A. Formisano8, T. Fornal58, L. Fortuna28, E. Fortuna-Zalesna61, M. Fortune1, C. Fowler1, E. Fransson74, L. Frassinetti34, M. Freisinger44, R. Fresa8, R. Fridström34, D. Frigione53, T. FĂŒlöp73, M. Furseman1, V. Fusco24, S. Futatani17, D. Gadariya77, K. GĂĄl69, D. Galassi40, K. GaƂazka58, S. Galeani53, D. Gallart78, R. Galvao55, Y. Gao44, J. Garcia27, M. GarcĂ­a-Muñoz79, M. Gardener1, L. Garzotti1, J. Gaspar80, R. Gatto81, P. Gaudio53, D. Gear1, T. Gebhart29, S. Gee1, M. Gelfusa53, R. George1, S.N. Gerasimov1, G. Gervasini12, M. Gethins1, Z. Ghani1, M. Gherendi63, F. Ghezzi12, J.C. Giacalone27, L. Giacomelli12, G. Giacometti54, C. Gibson1, K.J. Gibson72, L. Gil2, A. Gillgren74, D. Gin4, E. Giovannozzi17, C. Giroud1, R. Glen1, S. Glöggler18, J. Goff1, P. Gohil32, V. Goloborodko82, R. Gomes2, B. Gonçalves2, M. Goniche27, A. Goodyear1, S. Gore1, G. Gorini56, T. Görler18, N. Gotts1, R. Goulding43, E. Gow1, B. Graham1, J.P. Graves40, H. Greuner18, B. Grierson43, J. Griffiths1, S. Griph1, D. Grist1, W. Gromelski58, M. Groth59, R. Grove29, M. Gruca58, D. Guard1, N. Gupta1, C. Gurl1, A. Gusarov83, L. Hackett1, S. Hacquin27,30, R. Hager43, L. HĂ€gg16, A. Hakola6, M. Halitovs24, S. Hall1, S.A. Hall1, S. Hallworth-Cook1, C.J. Ham1, D. Hamaguchi7, M. Hamed27, C. Hamlyn-Harris1, K. Hammond1, E. Harford1, J.R. Harrison1, D. Harting1, Y. Hatano84, D.R. Hatch50, T. Haupt1, J. Hawes1, N.C. Hawkes1, J. Hawkins1, T. Hayashi7, S. Hazael1, S. Hazel1, P. Heesterman1, B. Heidbrink85, W. Helou13, O. Hemming1, S.S. Henderson1, R.B. Henriques2, D. Hepple1, J. Herfindal29, G. Hermon1, J. Hill1, J.C. Hillesheim1, K. Hizanidis26, A. Hjalmarsson16, A. Ho60, J. Hobirk18, O. Hoenen13, C. Hogben1, A. Hollingsworth1, S. Hollis1, E. Hollmann68, M. Hölzl18, B. Homan45, M. Hook1, D. Hopley1, J. HorĂĄcek39, D. Horsley1, N. Horsten59, A. Horton1, L.D. Horton30,40, L. Horvath1,72, S. Hotchin1, R. Howell1, Z. Hu56, A. Huber44, V. Huber44, T. Huddleston1, G.T.A. Huijsmans13, P. Huynh27, A. Hynes1, M. Iliasova4, D. Imrie1, M. ImrĂ­sek39, J. Ingleby1, P. Innocente23, K. Insulander Björk73, N. Isernia8, I. Ivanova-Stanik58, E. Ivings1, S. Jablonski58, S. Jachmich13,30,51, T. Jackson1, P. Jacquet1, H. JĂ€rleblad86, F. Jaulmes39, J.Jenaro Rodriguez1, I. Jepu63, E. Joffrin27, R. Johnson1, T. Johnson34, J. Johnston1, C. Jones1, G. Jones1, L. Jones1, N. Jones1, T. Jones1, A. Joyce1, R. Juarez14, M. Juvonen1, P. Kalninž a24, T. Kaltiaisenaho6, J. Kaniewski1, A. Kantor1, A. Kappatou18, J. Karhunen5, D. Karkinsky1, Yu Kashchuk87, M. Kaufman29, G. Kaveney1, Ye.O. Kazakov51, V. Kazantzidis26, D.L. Keeling1, R. Kelly1, M. Kempenaars13, C. Kennedy1, D. Kennedy1, J. Kent1, K. Khan1, E. Khilkevich4, C. Kiefer18, J. KilpelĂ€inen59, C. Kim32, Hyun-Tae Kim1,30, S.H. Kim13, D.B. King1, R. King1, D. Kinna1, V.G. Kiptily1, A. Kirjasuo6, K.K. Kirov1, A. Kirschner44, T. kiviniemi59, G. Kizane24, M. Klas88, C. Klepper29, A. Klix31, G. Kneale1, M. Knight1, P. Knight1, R. Knights1, S. Knipe1, M. Knolker32, S. Knott89, M. Kocan13, F. Köchl1, I. Kodeli65, Y. Kolesnichenko82, Y. Kominis26, M. Kong1, V. Korovin71, B. Kos65, D. Kos1, H.R. Koslowski44, M. Kotschenreuther50, M. Koubiti54, E. Kowalska-Strzeciwilk ˛ 58, K. Koziol3, A. Krasilnikov87, V. Krasilnikov13,15, M. Kresina1,27, K. Krieger18, N. Krishnan1, A. Krivska51, U. Kruezi13, I. Ksia˛zek ˙ 90, A.B. Kukushkin11, H. Kumpulainen59, T. Kurki-Suonio59, H. Kurotaki7, S. Kwak36, O.J. Kwon91, L. Laguardia12, E. Lagzdina24, A. Lahtinen5, A. Laing1, N. Lam1, H.T. Lambertz44, B. Lane1, C. Lane1, E.Lascas Neto40, E. Ɓaszynska58, K.D. Lawson1, A. Lazaros26, E. Lazzaro12, G. Learoyd1, Chanyoung Lee92, S.E. Lee84, S. Leerink59, T. Leeson1, X. Lefebvre1, H.J. Leggate67, J. Lehmann1, M. Lehnen13, D. Leichtle31,93, F. Leipold13, I. Lengar65, M. Lennholm1,75, E. Leon Gutierrez9, B. Lepiavko82, J. LeppĂ€nen6, E. Lerche51, A. Lescinskis24, J. Lewis1, W. Leysen83, L. Li44, Y. Li44, J. Likonen6, Ch. Linsmeier44, B. Lipschultz72, X. Litaudon27,30, E. Litherland-Smith1, F. Liu27,30, T. Loarer27, A. Loarte13, R. Lobel1, B. Lomanowski29, P.J. Lomas1, J.M. Lopez21, R. Lorenzini23, S. Loreti17, U. Losada9, V.P. Loschiavo8, M. Loughlin13, Z. Louka1, J. Lovell29, T. Lowe1, C. Lowry1,75, S. Lubbad1, T. Luce13, R. Lucock1, A. Lukin94, C. Luna95, E.de la Luna9, M. Lungaroni53, C.P. Lungu63, T. Lunt18, V. Lutsenko82, B. Lyons32, A. Lyssoivan51, M. Machielsen40, E. Macusova39, R. MĂ€enpÀÀ59, C.F. Maggi1, R. Maggiora96, M. Magness1, S. Mahesan1, H. Maier18, R. Maingi43, K. Malinowski58, P. Manas18,54, P. Mantica12, M.J. Mantsinen97, J. Manyer78, A. Manzanares98, Ph. Maquet13, G. Marceca40, N. Marcenko87, C. Marchetto99, O. Marchuk44, A. Mariani12, G. Mariano17, M. Marin60, M. Marinelli53, T. Markovicˇ39, D. Marocco17, L. Marot33, S. Marsden1, J. Marsh1, R. Marshall1, L. Martellucci53, A. Martin1, A.J. Martin1, R. Martone8, S. Maruyama13, M. Maslov1, S. Masuzaki19, S. Matejcik88, M. Mattei8, G.F. Matthews1, D. Matveev44, E. Matveeva39, A. Mauriya2, F. Maviglia8, M. Mayer18, M.-L. Mayoral1,69, S. Mazzi54, C. Mazzotta17, R. McAdams1, P.J. McCarthy89 K.G. McClements1, J. McClenaghan32, P. McCullen1, D.C. McDonald1, D. McGuckin1, D. McHugh1, G. McIntyre1, R. McKean1, J. McKehon1, B. McMillan57, L. McNamee1, A. McShee1, A. Meakins1, S. Medley1, C.J. Meekes60,100, K. Meghani1, A.G. Meigs1, G. Meisl18, S. Meitner29, S. Menmuir1, K. Mergia10, S. Merriman1, Ph. Mertens44, S. Meshchaninov15, A. Messiaen51, R. Michling57, P. Middleton1, D. Middleton-Gear1, J. Mietelski38, D. Milanesio96, E. Milani53, F. Militello1, A.Militello Asp1, J. Milnes1, A. Milocco56, G. Miloshevsky101, C. Minghao1, S. Minucci52, I. Miron63, M. Miyamoto102, J. MlynĂĄr39,103, V. Moiseenko71, P. Monaghan1, I. Monakhov1, T. Moody1, S. Moon34, R. Mooney1, S. Moradi51, J. Morales27, R.B. Morales1, S. Mordijck104, L. Moreira1, L. Morgan1, F. Moro17, J. Morris1, K.-M. Morrison1, L. Msero13,33, D. Moulton1, T. Mrowetz1, T. Mundy1, M. Muraglia54, A. Murari23,30, A. Muraro12, N. Muthusonai1, B. N’Konga45, Yong-Su Na92, F. Nabais2, M. Naden1, J. Naish1, R. Naish1, F. Napoli17, E. Nardon27, V. Naulin86, M.F.F. Nave2, I. Nedzelskiy3, G. Nemtsev15, V. Nesenevich4, I. Nestoras1, R. Neu18, V.S. Neverov11, S. Ng1, M. Nicassio1, A.H. Nielsen86, D. Nina2, D. Nishijima105, C. Noble1, C.R. Nobs1, M. Nocente56, D. Nodwell1, K. Nordlund5, H. Nordman13, R. Normanton1, J.M. Noterdaeme18, S. Nowak12, E. Nunn1, H. Nyström34, M. Oberparleiter74, B. Obryk38, J. O’Callaghan1, T. Odupitan1, H.J.C. Oliver1,50, R. Olney1, M. O’Mullane106, J. Ongena51, E. Organ1, F. Orsitto8, J. Orszagh88, T. Osborne32, R. Otin1, T. Otsuka107, A. Owen1, Y. Oya108, M. Oyaizu7, R. Paccagnella23, N. Pace1, L.W. Packer1, S. Paige1, E. Pajuste24, D. Palade63, S.J.P. Pamela1, N. Panadero9, E. Panontin56, A. Papadopoulos26, G. Papp18, P. Papp88, V.V. Parail1, C. Pardanaud54, J. Parisi1,109, F.Parra Diaz109, A. Parsloe1, M. Parsons29, N. Parsons1, M. Passeri53, A. Patel1, A. Pau40, G. Pautasso18, R. Pavlichenko71, A. Pavone36, E. Pawelec90, C.Paz Soldan110, A. Peacock1,75, M. Pearce1, E. Peluso53, C. Penot13, K. Pepperell1, R. Pereira2, T. Pereira2, E.Perelli Cippo12, P. Pereslavtsev107, C. Perez von Thun58, V. Pericoli58, D. Perry1, M. Peterka39, P. Petersson34, G. Petravich22, N. Petrella1, M. Peyman1, M. Pillon17, S. Pinches13, G. Pintsuk44, W. Pires de SĂĄ55, A. Pires dos Reis55, C. Piron17, L. Pionr23,111, A. Pironti8, R. Pitts13, K.L. van de Plassche60, N. Platt1, V. Plyusnin2, M. Podesta43, G. Pokol22, F.M. Poli43, O.G. Pompilian63, S. Popovichev1, M. Poradzinski58, M.T. Porfiri17, M. Porkolab20, C. Porosnicu63, M. Porton1, G. Poulipoulis112, I. Predebon23, G. Prestopino53, C. Price1, D. Price1, M. Price1, D. Primetzhofer16, P. Prior1, G. Provatas46, G. Pucella17, P. Puglia40, K. Purahoo1, I. Pusztai73, O. Putignano56, T. PĂŒtterich18, A. Quercia8, E. Rachlew73, G. Radulescu29, V. Radulovic65, M. Rainford1, P. Raj31, G. Ralph1, G. Ramogida17, D. Rasmussen29, J.J. Rasmussen86, G. RattĂĄ9, S. Ratynskaia113, M. Rebai12, D. Refy22, R. Reichle13, M. Reinke29, D. Reiser44, C. Reux27, S. Reynolds1, M.L. Richiusa1, S. Richyal1, D. Rigamonti12, F.G. Rimini1, J. Risner29, M. Riva17, J. Rivero-Rodriguez79, C.M. Roach1, R. Robins1, S. Robinson1, D. Robson1, R. Rodionov87, P. Rodrigues2, M.Rodriguez Ramos109, P. Rodriguez-Fernandez3, F. Romanelli74, M. Romanelli1, S. Romanelli1, J. Romazanov44, R. Rossi53, S. Rowe1, D. Rowlands1,30, M. Rubel34, G. Rubinacci8, G. Rubino52, L. Ruchko55, M. Ruiz21, J.Ruiz Ruiz109, C. Ruset63, J. Rzadkiewicz3, S. Saarelma1, E. Safi5, A. Sahlberg16, M. Salewski86, A. Salmi6, R. Salmon1, F. Salzedas2,114, I. Sanders1, D. Sandiford1, B. Santos2, A. Santucci17, K. SĂ€rkimĂ€ki73, R. Sarwar1, I. Sarychev1, O. Sauter40, P. Sauwan14, N. Scapin48, F. Schluck44, K. Schmid18, S. Schmuck12, M. Schneider13, P.A. Schneider18, D. Schwörer67, G. Scott1, M. Scott1, D. Scraggs1, S. Scully1, M. Segato1, Jaemin Seo92, G. Sergienko44, M. Sertoli1, S.E. Sharapov1, A. Shaw1, H. Sheikh1, U. Sheikh40, A. Shepherd1, A. Shevelev4, P. Shigin13, K. Shinohara115, S. Shiraiwa43, D. Shiraki29, M. Short1, G. Sias25, S.A. Silburn1, A. Silva2, C. Silva2, J. Silva1, D. Silvagni18, D. Simfukwe1, J. Simpson1,59, D. Sinclair1, S.K. SipilĂ€59, A.C.C. Sips75, P. Siren5, A. Sirinelli13, H. Sjöstrand16, N. Skinner1, J. Slater1, N. Smith1, P. Smith1, J. Snell1, G. Snoep60, L. Snoj65, P. Snyder32, S. Soare63, E.R. Solano9, V. Solokha59, A. Somers67, C. Sommariva40, K. Soni33, E. Sorokovoy71, M. Sos39, J. Sousa2, C. Sozzi12, S. Spagnolo23, T. Spelzini1, F. Spineanu63, D. Spong29, D. Sprada1, S. Sridhar27, C. Srinivasan1, G. Stables1, G. Staebler32, I. Stamatelatos10, Z. Stancar65, P. Staniec1, G. Stankunas116, M. Stead1, E. Stefanikova34, A. Stephen1, J. Stephens1, P. Stevenson1, M. Stojanov1, P. Strand74, H.R. Strauss117, S. Strikwerda1, P. Ström34, C.I. Stuart1, W. Studholme1, M. Subramani1, E. Suchkov88, S. Sumida7, H.J. Sun1, T.E. Susts24, J. Svensson36, J. Svoboda39, R. Sweeney20, D. Sytnykov71, T. Szabolics22, G. Szepesi1, B. Tabia1, T. TadicÂŽ46, B. TĂĄl18, T. Tala6, A. Tallargio1, P. Tamain27, H. Tan1, K. Tanaka19, W. Tang43, M. Tardocchi12, D. Taylor1, A.S. Teimane24, G. Telesca58, N. Teplova4, A. Teplukhina43, D. Terentyev83, A. Terra44, D. Terranova23, N. Terranova17, D. Testa40, E. Tholerus1,34, J. Thomas1, E. Thoren113, A. Thorman1, W. Tierens18, R.A. Tinguely20, A. Tipton1, H. Todd1, M. Tokitani19, P. Tolias113, M. Tomes39, A. Tookey1, Y. Torikai118, U. von Toussaint18, P. Tsavalas10, D. Tskhakaya39,119, I. Turner1, M. Turner1, M.M. Turner67, M. Turnyanskiy1,69, G. Tvalashvili1, S. Tyrrell1, M. Tyshchenko82, A. Uccello12, V. Udintsev13, G. Urbanczyk27, A. Vadgama1, D. Valcarcel1, M. Valisa23, P.Vallejos Olivares34, O. Vallhagen73, M. Valovicˇ1, D. Van Eester51, J. Varje59, S. Vartanian27, T. Vasilopoulou10, G. Vayakis13, M. Vecsei22, J. Vega9, S. Ventre8, G. Verdoolaege64, C. Verona53, G.Verona Rinati53, E. Veshchev13, N. Vianello23, E. Viezzer79, L. Vignitchouk113, R. Vila9, R. Villari17, F. Villone8, P. Vincenzi23, I. Vinyar94, B. Viola17, A.J. Virtanen59, A. Vitins24, Z. Vizvary1, G. Vlad17, M. Vlad63, P. VondrĂĄcek39, P.de Vries13, B. Wakeling1, N.R. Walkden1, M. Walker1, R. Walker1, M. Walsh13, E. Wang44, N. Wang1, S. Warder1, R. Warren1, J. Waterhouse1, C. Watts13, T. Wauters51, A. Weckmann34, H.Wedderburn Maxwell1, M. Weiland18, H. Weisen40, M. Weiszflog16, P. Welch1, N. Wendler58, A. West1, M. Wheatley1, S. Wheeler1, A. Whitehead1, D. Whittaker1, A. Widdowson1, S. Wiesen44, J. Wilkinson1, J.C. Williams1, D. Willoughby1, I. Wilson1, J. Wilson1, T. Wilson1, M. Wischmeier18, P. Wise1, G. Withenshaw1, A. Withycombe1, D. Witts1, A. Wojcik-Gargula38, E. Wolfrum18, R. Wood1, C. Woodley1, R. Woodley1, B. Woods1, J. Wright1, J.C. Wright20, T. Xu1, D. Yadikin74, M. Yajima19, Y. Yakovenko82, Y. Yang13, W. Yanling44, V. Yanovskiy39, I. Young1, R. Young1, R.J. Zabolockis24, J. Zacks1, R. Zagorski3, F.S. Zaitsev88, L. Zakharov5, A. Zarins24, D. Zarzoso Fernandez54, K.-D. Zastrow1, Y. Zayachuk1, M. Zerbini17, W. Zhang18, Y. Zhou34, M. Zlobinski44, A. Zocco36, A. Zohar65, V. Zoita63, S. Zoletnik22, V.K. Zotta81, I. Zoulias1, W. Zwingmann2 and I. Zychor3 // 1 United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain and Northern Ireland 2 Instituto de Plasmas e Fusao Nuclear, Instituto Superior TĂ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal 3 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Swierk, Poland 4 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russia 5 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland 6 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland 7 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan 8 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy 9 Laboratorio Nacional de FusiĂłn, CIEMAT, Madrid, Spain 10 NCSR ‘Demokritos’ 153 10, Agia Paraskevi Attikis, Greece 11 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russia 12 Institute for Plasma Science and Technology, CNR, via R. Cozzi 53, 20125 Milano, Italy 13 ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul Lez Durance Cedex, France 14 Universidad Nacional de Educacion a Distancia, Dept Ingn Energet, Calle Juan del Rosal 12, E-28040 Madrid, Spain 15 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russia 16 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden 17 Dip.to Fusione e Tecnologie per la Sicurezza Nucleare, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy 18 Max-Planck-Institut fĂŒr Plasmaphysik, D-85748 Garching, Germany 19 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan 20 MIT Plasma Science and Fusion Center, Cambridge, MA 02139, United States of America 21 Universidad PolitĂ©cnica de Madrid, Grupo I2A2, Madrid, Spain 22 Centre for Energy Research, POB 49, H-1525 Budapest, Hungary 23 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy 24 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia 25 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123 Cagliari, Italy 26 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece 27 CEA, IRFM, F-13108 Saint Paul Lez Durance, France 28 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, UniversitĂ  degli Studi di Catania, 95125 Catania, Italy 29 Oak Ridge National Laboratory, Oak Ridge, TN 37831, TN, United States of America 30 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom of Great Britain and Northern Ireland 31 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany 32 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America 33 Department of Physics, University of Basel, Switzerland 34 Fusion Plasma Physics, EECS, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden 35 Institut Jean Lamour, U
    • 

    corecore