1,963 research outputs found

    On the implementation of distributed asynchronous non-linear kernel methods over wireless sensor networks

    Get PDF
    In this paper, we face the implementation of a non-linear kernel method for regression on a wireless sensor network (WSN) based on MICAz motes. The operating system used is TinyOS 2.1.1. The algorithm estimates the value of some magnitude from the measurements of the motes in a distributed approach where information and computations are performed asynchronously. This proposal includes a research on the potential problems encountered along with the developed solutions. Namely, matrix and floating computations, acknowledgement mechanisms and data loss.Ministerio de Ciencia e Innovación, Consolider-Ingenio CSD2008-00010,TEC2012-38800-C03-{02} and European Union (FEDER)

    A new multi locus variable number of tandem repeat analysis scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset

    Get PDF
    Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies

    S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella enterica </it>serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, <it>S</it>. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, <it>S</it>. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. <it>S</it>. Typhi has 5% of genes as pseudogenes, much more than <it>S</it>. Typhimurium which contains 1%. As a consequence, <it>S</it>. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in <it>S</it>. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of <it>S</it>. Typhimurium. In <it>S</it>. Typhi, <it>sseJ </it>is a pseudogene. Therefore, we suggest that <it>sseJ </it>inactivation in <it>S</it>. Typhi has an important role in the development of the systemic infection.</p> <p>Results</p> <p>We investigated whether the <it>S</it>. Typhi <it>trans</it>-complemented with the functional <it>sseJ </it>gene from <it>S</it>. Typhimurium (STM) affects the cytotoxicity toward cultured cell lines. It was found that <it>S</it>. Typhi harbouring <it>sseJ<sub>STM </sub></it>presents a similar cytotoxicity level and intracellular retention/proliferation of cultured epithelial cells (HT-29 or HEp-2) as wild type <it>S</it>. Typhimurium. These phenotypes are significantly different from wild type <it>S</it>. Typhi</p> <p>Conclusions</p> <p>Based on our results we conclude that the mutation that inactivate the <it>sseJ </it>gene in <it>S</it>. Typhi resulted in evident changes in the behaviour of bacteria in contact with eukaryotic cells, plausibly contributing to the <it>S</it>. Typhi adaptation to the systemic infection in humans.</p

    Thread Counting in Plain Weave for Old Paintings Using Semi-Supervised Regression Deep Learning Models

    Full text link
    In this work, the authors develop regression approaches based on deep learning to perform thread density estimation for plain weave canvas analysis. Previous approaches were based on Fourier analysis, which is quite robust for some scenarios but fails in some others, in machine learning tools, that involve pre-labeling of the painting at hand, or the segmentation of thread crossing points, that provides good estimations in all scenarios with no need of pre-labeling. The segmentation approach is time-consuming as the estimation of the densities is performed after locating the crossing points. In this novel proposal, we avoid this step by computing the density of threads directly from the image with a regression deep learning model. We also incorporate some improvements in the initial preprocessing of the input image with an impact on the final error. Several models are proposed and analyzed to retain the best one. Furthermore, we further reduce the density estimation error by introducing a semi-supervised approach. The performance of our novel algorithm is analyzed with works by Ribera, Vel\'azquez, and Poussin where we compare our results to the ones of previous approaches. Finally, the method is put into practice to support the change of authorship or a masterpiece at the Museo del Prado.Comment: 21 page

    Using the equivalent material concept and the average strain energy density to analyse the fracture behaviour of structural materials

    Get PDF
    ABSTRACT: This paper provides a complete overview of the applicability of the Equivalent Material Concept in conjunction with the Average Strain Energy Density criterion, to provide predictions of fracture loads in structural materials containing U-notches. The Average Strain Density Criterion (ASED) has a linear-elastic nature, so in principle, it does not provide satisfactory predictions of fracture loads in those materials with nonlinear behaviour. However, the Equivalent Material Concept (EMC) is able to transform a physically nonlinear material into an equivalent linear-elastic one and, therefore, the combination of the ASED criterion with the EMC (EMC?ASED criterion) should provide good predictions of fracture loads in physically nonlinear materials. The EMC?ASED criterion is here applied to different types of materials (polymers, composites and metals) with different grades of nonlinearity, showing the accuracy of the corresponding fracture load predictions and revealing qualitatively the limitations of the methodology. It is shown how the EMC?ASED criterion provides good predictions of fracture loads in nonlinear materials as long as the nonlinear behaviour is mainly limited to the tensile behaviour, and how the accuracy decreases when the nonlinear behaviour is extended to the material behaviour in the presence of defectsFunding: This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant number PGC2018-095400-B-I00 (MCIU/AEI/FEDER, UE)

    Neurosonology: An Update

    Get PDF
    Recent technological advances in diagnostic ultrasound have resulted in the development of high-resolution, portable real-time scanners. In neurological ultrasound, these devices have been particularly useful for detecting intracranial hemorrhage in premature infants. Sonography is now being used during neurosurgical procedures to help in localizing masses for resection and biopsy, as well as in the placement of shunt catheters. The applications of neurosonology and our experience with intraoperative neurosonology are reported in this review

    Shear band formation in porous thin-walled tubes subjected to dynamic torsion

    Get PDF
    In this paper, we have performed 3D finite element calculations of thin-walled tubes subjected to dynamic twisting to investigate the effect of porous microstructure on the formation of shear localization bands under simple shear conditions. For that purpose, we have incorporated into the finite element model the porous microstructures of four different additive manufactured metals – aluminium alloy AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel 718 – for which the void volume fraction varies from ≈ 0.001% to ≈ 2 %, and the voids size between ≈ 6 μm and ≈ 110 μm (Marvi-Mashhadi et al., 2021). For each microstructure, we have created up to 10 realizations varying the spatial location of the voids and the distribution of voids size. The matrix material is elastic/plastic, with yielding defined by the von Mises yield criterion and associated flow rule. The yield stress evolution is considered to be dependent on strain, strain rate and temperature, with parameters corresponding to Titanium and HY-100 Steel, taken from Molinari (1997) and Batra and Kim (1990), respectively. Moreover, we have assumed the deformation process to be adiabatic. The calculations have been performed for shear strain rates ranging from 100 s−1 to 10000 s−1. To the authors’ knowledge, this is the first study ever that simulates dynamic torsion testing of porous materials with actual representation of voids, providing new results which bring to light the influence of porosity on dynamic shear banding under simple shearing. Namely, the numerical calculations have shown that both the location of the shear band and the critical strain leading to the shear band formation depend on the spatial and size distribution of the voids in the specimen, evidencing the influence of material defects on the localization pattern. Notably, the shear band nucleation strain decreases with both the void volume fraction in the specimen and the size of the voids, the size of the largest pore being the main microstructural feature controlling the loss of load carrying capacity of the specimen. In addition, we have carried out a parametric analysis varying the temperature and strain rate sensitivities of the material, and the loading rate. For the strain rates investigated, increasing the loading speed leads to a mild decrease of the shear strain leading to shear band formation, while the strain rate sensitivity is shown to stabilize material behavior and delay localization. Moreover, the numerical results have made apparent that for the hardening materials considered, thermal softening is essential to trigger the shear band formation, so that the porous microstructure alone does not lead to shear localization.The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme. Project PURPOSE, grant agreement 758056. J. C. Nieto-Fuentes acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid, Spain and the European Union's Horizon 2020 research and innovation programme, under the Marie Sklodowska-Curie grant agreement 801538

    Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata)

    Get PDF
    Background Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. Results We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. Conclusions The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.This work was supported by the 7th Research Framework Programme of the European Union “Eurolegume (Enhancing of Legumes Growing in Europe through Sustainable Cropping for Protein Supply for Food and Feed)” FP7– 613781. The funding body had no role in the experimental design, analysis or results shown in the manuscript
    corecore