53 research outputs found

    Epsilon iron oxide: Origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials

    Get PDF
    The identification of epsilon iron oxide (-Fe2O3) as the low Curie temperature high coercivity stable phase (HCSLT) carrying the remanence in heated archeological samples has been achieved in samples from two archeological sites that exhibited the clearest evidence of the presence of the HCSLT. This uncommon iron oxide has been detected by Confocal Raman Spectroscopy (CRS) and characterized by rock magnetic measurements. Large numbers of -Fe2O3 microaggregates (in CO) or isolated clusters (in HEL) could be recognized, distributed over the whole sample, and embedded within the ceramic matrix, along with hematite and pseudobrookite and with minor amounts of anatase, rutile, and maghemite. Curie temperature estimates of around 170 degrees C for CO and 190 degrees C for HEL are lower than for pure, synthetic -Fe2O3 (227 degrees C). This, together with structural differences between the Raman spectra of the archeologically derived and synthetic samples, is likely due to Ti substitution in the -Fe2O3 crystal lattice. The -Fe2O3--Fe2O3--Fe2O3 transformation series has been recognized in heated archeological samples, which may have implications in terms of their thermal history and in the factors that govern the formation of -Fe2O3

    Ag-AgO nanostructures on glass substrates by solid-state dewetting: From extended to localized surface plasmons

    Get PDF
    We present here a study on the modification of morphological and plasmonic properties of Ag thin films deposited on glass substrates upon annealing in air at different temperatures. Initially, Ag films are continuous and exhibit extended surface plasmons with a resonant absorbance that depends on the film thickness. The dewetting process promotes the formation of nanoparticles with different sizes, shapes, and agglomerations states, besides a partial oxidation from Ag to AgO at surface level. The final Ag-AgO nanostructures are dependent on the annealing temperature and initial film thickness. The optical properties evolve from those typical of metallic films with high reflectivity and extended surface plasmon resonance toward localized surface plasmons characteristic of nanoparticles. The optical evolution and the final plasmonic response are evaluated according to the morphological and structural features of nanostructures. Published by AIP Publishing

    Further progress in the study of epsilon iron oxide in archaeological baked clays

    Get PDF
    [EN] The occurrence of Δ-FeO in archaeological samples that have been subjected to high temperatures is gradually being detected by the use of micrometric structural characterization techniques. This work provides new information by revealing that the Δ-FeO is formed as a response to temperature, the aggregation state and the position within the baked clay with respect to the nearest heat source. In addition, depending mainly on the atmospheric environment, the temperature reached by the combustion structure, the distance from the heating source and the particle aggregation, other iron oxide magnetic phases are produced. In the baked clay studied here, hematite is found over the whole range of samples studied but its magnetic contribution is negligible. Magnetite is observed at the sample surface, probably due to local atmospheric environment closest to the combustion source. Maghemite is found at all depths up to 6 cm below the sample surface. Δ-FeO has a limited distribution, found within 2–3 cm of the sample surface. Furthermore, the viability of this compound as a palaeofield marker has been evaluated in both archaeological and synthetic samples. The results indicate that Δ-FeO is able to register the direction of the magnetic field. Linear palaeointensity plots have been obtained in synthetic samples, although the value of the palaeofield could be, sometimes, overestimated.The authors also acknowledge the financial support from the Spanish Ministry of Science, Innovation and Universities under the projects RTI2018-095856-B-C21, CGL2017-87015-P, CGL2017-92285-EXP, CGL2017-92285-EXP/BTE, MAT2017-86540-C4-1-R, MAT2017-87072-C4-2-P and RTI2018-095303-A-C52, from Comunidad de Madrid NANOFRONTMAG S2013/MIT-2850 and NANOMAGCOST S2018/NMT-4321, and from the European Commission under H2020 frame by AMPHIBIAN Project ID: 720853. APO thanks the Ministry of Economy, Industry and Competitiveness (PTA Contract).Peer reviewe

    A combined micro-Raman, X-ray absorption and magnetic study to follow the glycerol-assisted growth of epsilon-iron oxide sol-gel coatings

    Get PDF
    [EN] Epsilon iron oxide (Δ-FeO) coatings on Si(100) substrates are obtained by an easy one-pot sol-gel recipe assisted by glycerol in an acid medium. Glycerol, given its small dimensions, enables the formation of Δ-FeO nanoparticles with a size of a few nanometers and the highest purity is reached in coatings after a densification treatment at 960 °C. The structural and compositional evolution up to 1200 °C is studied by confocal Raman microscopy and X-ray absorption spectroscopy techniques, correlating the existing magnetic properties. We report a novel characterization method, which allows monitoring the evolution of the precursor micelles as well as the intermediate and final phases formed. Furthermore, the inherent industrial technology transfer of the sol-gel process is also demonstrated with the Δ-FeO polymorph, impelling its application in the coatings form.This work has been supported by the Ministerio de Ciencia e InnovaciĂłn (MCINN, Spain) through the projects PIE: 2021-60-E-030, PIE: 2010-6-OE-013, PID2019-104717RB-I00 (2020–2022), MAT2017-86540-C4-1-R, RTI2018-095856-B-C21 (2019–2021), RTI2018-097895-B-C43 and RTI2018-095303-A-C52. The authors are grateful to The ESRF (France), MCINN and Consejo Superior de Investigaciones CientĂ­ficas (CSIC, Spain) for the provision of synchrotron radiation facilities and to the BM25-SpLine Staff for their valuable help. A.S.and A.M.-N acknowledge financial support from Comunidad de Madrid (Spain) for an “AtracciĂłn de Talento Investigador” Contract 2017-t2/IND5395 and 2018-T1/IND-10360, respectivel

    Self-assembly of iron oxide precursor micelles driven by magnetic stirring time in sol-gel coatings

    Get PDF
    The purpose of this work is to fabricate self-assembled microstructures by the sol-gel method and study the morphological, structural and compositional dependence of epsilon-Fe_2O_3 nanoparticles embedded in silica when glycerol (GLY) and cetyl-trimethylammonium bromide (CTAB) are added as steric agents simultaneously. The combined action of a polyalcohol and a surfactant significantly modifies the morphology of the sample giving rise to a different microstructure in each of the studied cases (1, 3 and 7 days of magnetic stirring time). This is due to the fact that the addition of these two compounds leads to a considerable increase in gelation time as GLY can interact with the alkoxide group on the surface of the iron oxide precursor micelle and/or be incorporated into the hydrophilic chains of CTAB. This last effect causes the iron oxide precursor micelles to be interconnected forming aggregates whose size and structure depend on the magnetic stirring time of the sol-gel synthetic route. In this paper, crystalline structure, composition, purity and morphology of the sol-gel coatings densified at 960 degrees C are examined. Emphasis is placed on the nominal percentage of the different iron oxides found in the samples and on the morphological and structural differences. This work implies the possibility of patterning epsilon-Fe_2O_3 nanoparticles in coatings and controlling their purity by an easy one-pot sol-gel method

    Epsilon iron oxide: origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials

    Get PDF
    The identification of epsilon iron oxide (ɛ-Fe2O3) as the low Curie temperature high coercivity stable phase (HCSLT) carrying the remanence in heated archeological samples has been achieved in samples from two archeological sites that exhibited the clearest evidence of the presence of the HCSLT. This uncommon iron oxide has been detected by Confocal Raman Spectroscopy (CRS) and characterized by rock magnetic measurements. Large numbers of ɛ-Fe2O3 microaggregates (in CO) or isolated clusters (in HEL) could be recognized, distributed over the whole sample, and embedded within the ceramic matrix, along with hematite and pseudobrookite and with minor amounts of anatase, rutile, and maghemite. Curie temperature estimates of around 170°C for CO and 190°C for HEL are lower than for pure, synthetic ɛ-Fe2O3 (227°C). This, together with structural differences between the Raman spectra of the archeologically derived and synthetic samples, is likely due to Ti substitution in the ɛ-Fe2O3 crystal lattice. The Îł-Fe2O3-ɛ-Fe2O3-α-Fe2O3 transformation series has been recognized in heated archeological samples, which may have implications in terms of their thermal history and in the factors that govern the formation of ɛ-Fe2O3

    Further progress in the study of epsilon iron oxide in archaeological baked clays

    Get PDF
    The occurrence of Δ-Fe2O3 in archaeological samples that have been subjected to high temperatures is gradually being detected by the use of micrometric structural characterization techniques. This work provides new information by revealing that the Δ-Fe2O3 is formed as a response to temperature, the aggregation state and the position within the baked clay with respect to the nearest heat source. In addition, depending mainly on the atmospheric environment, the temperature reached by the combustion structure, the distance from the heating source and the particle aggregation, other iron oxide magnetic phases are produced. In the baked clay studied here, hematite is found over the whole range of samples studied but its magnetic contribution is negligible. Magnetite is observed at the sample surface, probably due to local atmospheric environment closest to the combustion source. Maghemite is found at all depths up to 6 cm below the sample surface. Δ-Fe2O3 has a limited distribution, found within 2–3 cm of the sample surface. Furthermore, the viability of this compound as a palaeofield marker has been evaluated in both archaeological and synthetic samples. The results indicate that Δ-Fe2O3 is able to register the direction of the magnetic field. Linear palaeointensity plots have been obtained in synthetic samples, although the value of the palaeofield could be, sometimes, overestimated

    Vaccination adjuvated against hepatitis B in Spanish National Healthcare System (SNS) workers typed as non-responders to conventional vaccines

    Get PDF
    [EN] Trial Design: An interventional, phase 4, single group assignment, without masking (open label), preventive clinical trial was carried out in health workers with biological risk in their tasks, who have been filed as non-responders to conventional vaccination against Hepatitis B. Methods: 67 health workers with biological risk in their tasks, who have been filed as non-responders to conventional vaccination against Hepatitis B, were enrolled in the Clinical Trial. All participants were from 18 years up to 64 years old. Inclusion Criteria: NHS workers -including university students doing their internships in health centres dependent on the National Health System (inclusion of students is regulated and limited by specific instructions on labour prevention in each autonomous community)- classified as non-responders. The criteria defining them as non-responders to the conventional hepatitis B vaccine is anti HBsAb titers < 10 mUI/ml following the application of six doses of conventional vaccine at 20 lg doses (two complete guidelines). The objective of this study was to provide Health workersstaff with an additional protection tool against hepatitis B infection, and to evaluate the efficacy of the adjuvanted vaccine in healthy non-responders to conventional hepatitis B vaccine. The primary outcome was the measurement of antibody antiHBs before the first Fendrix dose and a month after the administration of each dose. Other outcome was collection of adverse effects during administration and all those that could be related to the vaccine and that occur within 30 days after each dose. In this study, only one group was assigned. There was no randomization or masking. Results: The participants were recruited between April 13, 2018 and October 31, 2019. 67 participants were enrolled in the Clinical Trial and included the analyses. The primary immunisation consists of 4 separate 0.5 ml doses of Fendrix , administered at the following schedule: 1 month, 2 months and 6 months from the date of the first dose. Once the positivity was reached in any of the doses, the participant finished the study and was not given the following doses. 68.66% (46 out 67) had a positive response to first dose of Fendrix. 57.14% (12 out 21) had a positive response to second dose of Fendrix . 22.22% (2 out 9) had a positive response to third dose of Fendrix and 42.96% (3 out 7) had a positive response to last dose of Fendrix. Overall, 94.02% (64 out 67) of participants had a positive response to Fendrix . No serious adverse event occurred. Conclusions: The use of Fendrix , is a viable vaccine alternative for NHS workers classified as ‘‘nonresponders”. Revaccination of healthy non-responders with Fendrix, resulted in very high proportions of responders without adverse events. Trial registration: The trial was registered in the Spanish National Trial Register (REEC), ClinicalTrials.gov and inclusion has been stopped (identifier NCT03410953; EudraCT-number 2016-004991-23). Funding: GRS 1360/A/16: Call for aid for the financing of research projects in biomedicine, health management and socio-health care to be developed in the centres of the Regional Health Management of Autonomous Community of Castile-Leon. In addition, this work has been supported by the Spanish Platform for Clinical Research and Clinical Trials, SCReN (Spanish Clinical Research Network), funded by the Subdirectorate General for Research Evaluation and Promotion of the Carlos III Health Institute (ISCIII), through the project PT13/0002/0039 and project PT17/0017/0023 integrated in the State Plan for R&D&I 2013–2016 and co-financed by and the European Regional Development Fund (ERDF)

    Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID‑19

    Get PDF
    Background. COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. Methods. A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. Results. The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183–12.968], 0.025), viral RNA load (N1) (1.962 [1.244–3.096], 0.004); viral RNA load (N2) (2.229 [1.382–3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). Conclusions. SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.This work was supported by awards from the Canadian Institutes of Health Research, the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding initiative (CIHR OV2 – 170357), Research Nova Scotia (DJK), Atlantic Genome/Genome Canada (DJK), Li-Ka Shing Foundation (DJK), Dalhousie Medical Research Foundation (DJK), the “Subvenciones de concesión directa para proyectos y programas de investigación del virus SARS‐CoV2, causante del COVID‐19”, FONDO–COVID19, Instituto de Salud Carlos III (COV20/00110, CIBERES, 06/06/0028), (AT) and fnally by the “Convocatoria extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la fnanciación de proyectos de investigación en enfermedad COVID-19” (GRS COVID 53/A/20) (CA). DJK is a recipient of the Canada Research Chair in Translational Vaccinology and Infammation. APT was funded by the Sara Borrell Research Grant CD018/0123 funded by Instituto de Salud Carlos III and co-fnanced by the European Development Regional Fund (A Way to Achieve Europe programme). The funding sources did not play any role neither in the design of the study and collection, not in the analysis, in the interpretation of data or in writing the manuscript

    The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry

    Get PDF
    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with &gt;80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes
    • 

    corecore