27 research outputs found

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Application of the Fractal Method to the Characterization of Organic Heterogeneities in Shales and Exploration Evaluation of Shale Oil

    No full text
    The first member of the Qingshankou Formation, in the Gulong Sag in the northern part of the Songliao Basin, has become an important target for unconventional hydrocarbon exploration. The organic-rich shale within this formation not only provides favorable hydrocarbon source rocks for conventional reservoirs, but also has excellent potential for shale oil exploration due to its thickness, abundant organic matter, the overall mature oil generation state, high hydrocarbon retention, and commonly existing overpressure. Geochemical analyses of the total organic carbon content (TOC) and rock pyrolysis evaluation (Rock-Eval) have allowed for the quantitative evaluation of the organic matter in the shale. However, the organic matter exhibits a highly heterogeneous spatial distribution and its magnitude varies even at the millimeter scale. In addition, quantification of the TOC distribution is significant to the evaluation of shale reservoirs and the estimation of shale oil resources. In this study, well log data was calibrated using the measured TOC of core samples collected from 11 boreholes in the study area; the continuous TOC distribution within the target zone was obtained using the △logR method; the organic heterogeneity of the shale was characterized using multiple fractal models, including the box-counting dimension (Bd), the power law, and the Hurst exponent models. According to the fractal dimension (D) calculation, the vertical distribution of the TOC was extremely homogeneous. The power law calculation indicates that the vertical distribution of the TOC in the first member of the Qingshankou Formation is multi-fractal and highly heterogeneous. The Hurst exponent varies between 0.23 and 0.49. The lower values indicate higher continuity and enrichment of organic matter, while the higher values suggest a more heterogeneous organic matter distribution. Using the average TOC, coefficient of variation (CV), Bd, D, inflection point, and the Hurst exponent as independent variables, the interpolation prediction method was used to evaluate the exploration potential of the study area. The results indicate that the areas containing boreholes B, C, D, F, and I in the western part of the Gulong Sag are the most promising potential exploration areas. In conclusion, the findings of this study are of significant value in predicting favorable exploration zones for unconventional reservoirs

    Mendelian randomization study shows no causal relationship between psychiatric disorders and glaucoma in European and East Asian populations

    No full text
    Background: Glaucoma is a leading cause of blindness strongly associated with psychiatric disorders, but the causal association between glaucoma and psychiatric disorders remains uncertain because of the susceptibility of observational studies to confounding and reverse causation. This study aims to explore the potential causal association between glaucoma and three highly related psychiatric disorders (Depression, Insomnia, and Schizophrenia) in the European and East Asian populations using a two-sample Mendelian randomization analysis.Methods: Instrumental variables (IVs) of depression, insomnia, and schizophrenia in the European population were obtained after strict filtering. Summary-level data for glaucoma and glaucoma subtypes (primary open-angle glaucoma and primary closed-angle glaucoma) were obtained as outcomes. The inverse variance weighting (IVW) method was used as the primary method. Additionally, the causal effect was evaluated in the East Asian population using the same methods to validate analysis results. The robustness of these results was confirmed using heterogeneity, pleiotropy, and Steiger directionality test.Results: The primary MR results indicated that genetically driven psychiatric disorders were not causally associated with glaucoma (Depression: odds ratio (OR): 1.15, 95% confidence interval (CI): 0.93–1.42, p = 0.20; Insomnia: OR: 1.14, 95% CI: 0.63–2.05, p = 0.66; Schizophrenia: OR: 1.00, 95% CI: 0.93–1.08, p = 0.95), either with the risk of glaucoma subtypes in the European population. Meanwhile, results in the East Asian population were consistent with the results among the European population (Depression: OR = 1.38, CI 0.75–2.53, p = 0.30; Insomnia: OR = 0.99, CI 0.83–1.18, p = 0.93; Schizophrenia: OR = 1.06, CI 0.94–1.20, p = 0.34) with similar causal estimates in direction. Consistency was obtained by corroborating with other supporting methods. Besides, the robustness of the results was proved and the directionality test confirmed our estimation of potential causal direction (p < 0.001).Conclusion: This study found a non-causal association between psychiatric disorders and the risk of glaucoma in the European and East Asian populations, which contradicts many existing observational reports, indicating that increased psychiatric disorders in glaucoma patients were more likely modifiable rather not inheritable

    Spatiotemporal Heterogeneity and the Key Influencing Factors of PM2.5 and PM10 in Heilongjiang, China from 2014 to 2018

    No full text
    Particulate matter (PM) degrades air quality and negatively impacts human health. The spatial???temporal heterogeneity of PM (PM2.5 and PM10) concentration in Heilongjiang Province during 2014???2018 and the key impacting factors were investigated based on principal component analysis-based ordinary least square regression (PCA-OLS), PCA-based geographically weighted regression (PCA-GWR), PCA-based temporally weighted regression (PCA-TWR), and PCA-based geographically and temporally weighted regression (PCA-GTWR). Results showed that six principal components represented the temperature, wind speed, air pressure, atmospheric pollution, humidity, and vegetation cover factor, respectively, contributing 87% of original variables. All the local models (PCA-GWR, PCA-TWR, and PCA-GTWR) were superior to the global model (PCA-OLS), and PCA-GTWR has the best performance. PM had greater temporal than spatial heterogeneity due to seasonal periodicity. Air pollutants (i.e., SO2, NO2, and CO) and pressure were promoted whereas temperature, wind speed, and vegetation cover inhibited the PM concentration. The downward trend of annual PM concentration is obvious, especially after 2017, and the hot spot gradually changed from southwestern to southeastern cities. This study laid the foundation for precise local government prevention and control by addressing both excessive effect factors (i.e., meteorological factors, air pollutants, vegetation cover) and spatial-temporal heterogeneity of PM. ?? 2022 by the authors

    Analysis of Spatiotemporal Variation in Habitat Suitability for <i>Oedaleus decorus asiaticus</i> Bei-Bienko on the Mongolian Plateau Using Maxent and Multi-Source Remote Sensing Data

    No full text
    O. decorus asiaticus is a major grasshopper species that harms the development of agriculture on the Mongolian Plateau. Therefore, it is important to enhance the monitoring of O. decorus asiaticus. In this study, the spatiotemporal variation in the habitat suitability for O. decorus asiaticus on the Mongolian Plateau was assessed using maximum entropy (Maxent) modeling along with multi-source remote sensing data (meteorology, vegetation, soil, and topography). The predictions of the Maxent model were accurate (AUC = 0.910). The key environmental variables affecting the distribution of grasshoppers and their contribution were grass type (51.3%), accumulated precipitation (24.9%), altitude (13.0%), vegetation coverage (6.6%), and land surface temperature (4.2%). Based on the assessment results of suitability by Maxent model, the model threshold settings, and the formula for calculating the inhabitability index, the 2000s, 2010s, and 2020s inhabitable areas were calculated. The results show that the distribution of suitable habitat for O. decorus asiaticus in 2000 was similar to that in 2010. From 2010 to 2020, the suitability of the habitat for O. decorus asiaticus in the central region of the Mongolian Plateau changed from moderate to high. The main factor contributing to this change was accumulated precipitation. Few changes in the areas of the habitat with low suitability were observed across the study period. The results of this study enhance our understanding of the vulnerability of different regions on the Mongolian Plateau to plagues of O. decorus asiaticus and will aid the monitoring of grasshopper plagues in this region

    Microstructure Evolution and Toughening Mechanism of a Nb-18Si-5HfC Eutectic Alloy Created by Selective Laser Melting

    No full text
    Because of their superior mechanical performance at ultra-high temperatures, refractory niobium–silicon-based alloys are attractive high-temperature structural alloys, particularly as structural components in gas turbine engines. However, the development of niobium–silicon-based alloys for applications is limited because of the trade-off between room temperature fracture toughness and high-temperature strength. Here, we report on the fabrication of a Nb-18Si alloy with dispersion of hafnium carbide (HfC) particles through selective laser melting (SLM). XRD and SEM-BSE were used to examine the effects of scanning speed on the microstructure and the phase structure of the deposited Nb-18Si-5HfC alloy. The results show that when the scanning speed rises, the solid solubility of the solid solution improves, the interlamellar spacing of eutectics slowly decrease into nano-scale magnitude, and the corresponding hafnium carbide distribution becomes more uniform. We also discover the hafnium carbide particles dispersion in the inter-lamella structure, which contributes to its high fracture toughness property of 20.7 MPa∙m1/2 at room temperature. Hardness and fracture toughness are simultaneously improved because of the control of microstructure morphology and carbide distribution

    Image1_Experimental verification and comprehensive analysis of m7G methylation regulators in the subcluster classification of ischemic stroke.TIF

    No full text
    Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving several pathological mechanisms. Modification of 7-methylguanosine (m7G) has multiple regulatory functions. However, the expression pattern and mechanism of m7G in IS remain unknown. Herein, we aimed to explore the effect of m7G modification on IS.Methods: We screened significantly different m7G-regulated genes in Gene Expression Omnibus datasets, GSE58294 and GSE22255. The random forest (RF) algorithm was selected to identify key m7G-regulated genes that were subsequently validated using the middle cerebral artery occlusion (MCAO) model and quantitative polymerase chain reaction (qPCR). A risk model was subsequently generated using key m7G-regulated genes. Then, “ConsensusClusterPlus” package was used to distinguish different m7G clusters of patients with IS. Simultaneously, between two m7G clusters, differentially expressed genes (DEGs) and immune infiltration differences were also explored. Finally, we investigated functional enrichment and the mRNA–miRNA–transcription factor network of DEGs.Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 were key m7G-related genes in IS that could accurately predict clinical risk (area under the curve = 0.967). NCBP2 was the most significantly associated gene with immune infiltration. Based on the expression profiles of these key m7G-related genes, the IS group could be divided into two clusters. According to the single-sample gene set enrichment analysis algorithm, four types of immune cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells) were significantly different in the two m7G clusters. The functional enrichment of 282 DEGs between the two clusters was mainly concentrated in the “regulation of apoptotic signaling pathway,” “cellular response to DNA damage stimulus,” “adaptive immune system,” and “pyroptosis.” The miR-214–LTF–FOXJ1 axis may be a key regulatory pathway for IS.Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 may serve as potential diagnostic biomarkers for IS and that the m7G clusters developed by these genes provide more evidence for the regulation of m7G in IS.</p

    Table1_Experimental verification and comprehensive analysis of m7G methylation regulators in the subcluster classification of ischemic stroke.XLSX

    No full text
    Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving several pathological mechanisms. Modification of 7-methylguanosine (m7G) has multiple regulatory functions. However, the expression pattern and mechanism of m7G in IS remain unknown. Herein, we aimed to explore the effect of m7G modification on IS.Methods: We screened significantly different m7G-regulated genes in Gene Expression Omnibus datasets, GSE58294 and GSE22255. The random forest (RF) algorithm was selected to identify key m7G-regulated genes that were subsequently validated using the middle cerebral artery occlusion (MCAO) model and quantitative polymerase chain reaction (qPCR). A risk model was subsequently generated using key m7G-regulated genes. Then, “ConsensusClusterPlus” package was used to distinguish different m7G clusters of patients with IS. Simultaneously, between two m7G clusters, differentially expressed genes (DEGs) and immune infiltration differences were also explored. Finally, we investigated functional enrichment and the mRNA–miRNA–transcription factor network of DEGs.Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 were key m7G-related genes in IS that could accurately predict clinical risk (area under the curve = 0.967). NCBP2 was the most significantly associated gene with immune infiltration. Based on the expression profiles of these key m7G-related genes, the IS group could be divided into two clusters. According to the single-sample gene set enrichment analysis algorithm, four types of immune cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells) were significantly different in the two m7G clusters. The functional enrichment of 282 DEGs between the two clusters was mainly concentrated in the “regulation of apoptotic signaling pathway,” “cellular response to DNA damage stimulus,” “adaptive immune system,” and “pyroptosis.” The miR-214–LTF–FOXJ1 axis may be a key regulatory pathway for IS.Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 may serve as potential diagnostic biomarkers for IS and that the m7G clusters developed by these genes provide more evidence for the regulation of m7G in IS.</p
    corecore