35 research outputs found

    Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome

    Get PDF
    Background: Segmental Xp22.2 monosomy or a heterozygous HCCS mutation is associated with the microphthalmia with linear skin defects (MLS) or MIDAS (microphthalmia, dermal aplasia, and sclerocornea) syndrome, an X-linked disorder with male lethality. HCCS encodes the holocytochrome c-type synthase involved in mitochondrial oxidative phosphorylation (OXPHOS) and programmed cell death. Methods: We characterized the X-chromosomal abnormality encompassing HCCS or an intragenic mutation in this gene in six new female patients with an MLS phenotype by cytogenetic analysis, fluorescence in situ hybridization, sequencing, and quantitative real-time PCR. The X chromosome inactivation (XCI) pattern was determined and clinical data of the patients were reviewed. Results: Two terminal Xp deletions of ≥11.2 Mb, two submicroscopic copy number losses, one of ~850 kb and one of ≥3 Mb, all covering HCCS, 1 nonsense, and one mosaic 2-bp deletion in HCCS are reported. All females had a completely (>98:2) or slightly skewed (82:18) XCI pattern. The most consistent clinical features were microphthalmia/anophthalmia and sclerocornea/corneal opacity in all patients and congenital linear skin defects in 4/6. Additional manifestations included various ocular anomalies, cardiac defects, brain imaging abnormalities, microcephaly, postnatal growth retardation, and facial dysmorphism. However, no obvious clinical sign was observed in three female carriers who were relatives of one patient. Conclusion: Our findings showed a wide phenotypic spectrum ranging from asymptomatic females with an HCCS mutation to patients with a neonatal lethal MLS form. Somatic mosaicism and the different ability of embryonic cells to cope with an OXPHOS defect and/or enhanced cell death upon HCCS deficiency likely underlie the great variability in phenotypes

    Schimke immunoosseous dysplasia: defining skeletal features

    Get PDF
    Schimke immunoosseous dysplasia (SIOD) is an autosomal recessive multisystem disorder characterized by prominent spondyloepiphyseal dysplasia, T cell deficiency, and focal segmental glomerulosclerosis. Biallelic mutations in swi/snf-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1 (SMARCAL1) are the only identified cause of SIOD, but approximately half of patients referred for molecular studies do not have detectable mutations in SMARCAL1. We hypothesized that skeletal features distinguish between those with or without SMARCAL1 mutations. Therefore, we analyzed the skeletal radiographs of 22 patients with and 11 without detectable SMARCAL1 mutations. We found that patients with SMARCAL1 mutations have a spondyloepiphyseal dysplasia (SED) essentially limited to the spine, pelvis, capital femoral epiphyses, and possibly the sella turcica, whereas the hands and other long bones are basically normal. Additionally, we found that several of the adolescent and young adult patients developed osteoporosis and coxarthrosis. Of the 11 patients without detectable SMARCAL1 mutations, seven had a SED indistinguishable from patients with SMARCAL1 mutations. We conclude therefore that SED is a feature of patients with SMARCAL1 mutations and that skeletal features do not distinguish who of those with SED have SMARCAL1 mutations

    Incontinentia pigmenti revisited. A novel nonsense mutation of the IKBKG gene

    No full text
    Aim: To describe and evaluate the clinical and molecular findings of patients with incontinentia pigmenti (IP) in Greece. Methods: We examined 12 female patients, initially aged 2 weeks to 7 months with clinical diagnosis of IP. Standard tests were performed including skin biopsies and ocular, dental and neurologic examinations. Molecular analysis was carried out on 8 out of 12 cases. Results: The initial clinical examination was stage 1 (vesicular lesions), stage 2 (verrucous lesions) or stage 3 (hyperpigmented linear lesions of the trunk/limbs). At the final clinical examination, 10 of our patients had typical vesicular, verrucous or mixed hyper-hypopigmented skin lesions which had persisted from the neonatal period; seven had delayed dentition or conical teeth; two had developmental delay; one had microcephaly and strabismus and two had scarring alopecia. In seven patients, deletion of exons 4-10 of the IKBKG gene was found. In one patient, skewed X-inactivation was demonstrated and a novel mutation p.Gln332X was found. The mothers’ DNA analyses were all normal. Conclusion: In our sample, all the cases were sporadic and the diagnosis of IP was based mainly on clinical features and confirmed with skin histology. Molecular analysis was used to find the mutations, in some cases to confirm diagnosis and to identify the carriers, which are crucial for prenatal and preimplantation diagnosis

    A Clinical Study of Sotos Syndrome Patients With Review of the Literature

    No full text
    Sotos syndrome is characterized by tall stature, advanced bone age, typical facial abnormalities, and developmental delay. The associated gene is NSD1. The study involved 22 patients who fulfilled the clinical criteria. Phenotypic characteristics, central nervous system findings, and cardiovascular and urinary tract abnormalities were evaluated. Meta-analysis on the incidence of cardinal clinical manifestations from the literature was also performed. Macrocephaly was present in all patients. Advanced bone age was noted in 14 of 22 patients (63%), and its incidence presented significant statistical difference in the meta-analysis of previous studies. Some patients had serious clinical manifestations, such as congenital heart defects, dysplastic kidneys, psychosis, and leukemia. Clinical and laboratory examinations should be performed to prevent and manage any unusual medical aspect of the syndrome. Facial gestalt and macrocephaly, rather than advanced bone age, are the strongest indications for clinical diagnosis. (C) 2009 by Elsevier Inc. All rights reserved
    corecore