383 research outputs found

    Behavioral and transcriptomic analysis of Trem2-null mice: Not all knockout mice are created equal

    Get PDF
    It is clear that innate immune system status is altered in numerous neurodegenerative diseases. Human genetic studies have demonstrated that triggering receptor expressed in myeloid cells 2 (TREM2) coding variants have a strong association with Alzheimer\u27s disease (AD) and other neurodegenerative diseases. To more thoroughly understand the impact of TREM2 in vivo, we studied the behavioral and cognitive functions of wild-type (WT) and Trem2-/- (KO) mice during basal conditions and brain function in the context of innate immune stimulation with peripherally administered lipopolysaccharide (LPS). Early markers of neuroinflammation preceded Aif1 and Trem2 upregulation that occurred at later stages (24-48 h post-LPS). We performed a transcriptomic study of these cohorts and found numerous transcripts and pathways that were altered in Trem2-/- mice both at baseline and 48 h after LPS challenge. Importantly, our transcriptome analysis revealed that our Trem2-/- mouse line (Velocigene allele) results in exaggerated Treml1 upregulation. In contrast, aberrantly high Treml1 expression was absent in the Trem2 knockout line generated by the Colonna lab and the Jackson Labs CRISPR/Cas9 Trem2 knockout line. Notably, removal of the floxed neomycin selection cassette ameliorated aberrant Treml1 expression, validating the artifactual nature of Treml1 expression in the original Trem2-/- Velocigene line. Clearly further studies are needed to decipher whether the Treml1 transcriptional artifact is functionally meaningful, but our data indicate that caution is warranted when interpreting functional studies with this particular line. Additionally, our results indicate that other Velocigene alleles or targeting strategies with strong heterologous promoters need to carefully consider downstream genes

    Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals DNA methylome changes in T and B lymphocytes

    Get PDF
    AIM: Although aberrant DNA methylation has been described in rheumatoid arthritis (RA), no studies have interrogated this epigenetic modification in early disease. Following recent investigations of T- and B-lymphocytes in established disease, we now characterize in these cell populations genome-wide DNA methylation in treatment-naive patients with early RA. PATIENTS & METHODS: HumanMethylation450 BeadChips were used to examine genome-wide DNA methylation in lymphocyte populations from 23 early RA patients and 11 healthy individuals. RESULTS: Approximately 2000 CpGs in each cell type were differentially methylated in early RA. Clustering analysis identified a novel methylation signature in each cell type (150 sites in T-lymphocytes, 113 sites in B-lymphocytes) that clustered all patients separately from controls. A subset of sites differentially methylated in early RA displayed similar changes in established disease. CONCLUSION: Treatment-naive early RA patients display novel disease-specific DNA methylation aberrations, supporting a potential role for these changes in the development of RA

    Epigenome-wide profiling identifies significant differences in DNA methylation between matched-pairs of T- and B-lymphocytes from healthy individuals

    Get PDF
    Multiple reports now describe changes to the DNA methylome in rheumatoid arthritis and in many cases have analyzed methylation in mixed cell populations from whole blood. However, these approaches may preclude the identification of cell type-specific methylation, which may subsequently bias identification of disease-specific changes. To address this possibility, we conducted genome-wide DNA methylation profiling using HumanMethylation450 BeadChips to identify differences within matched pairs of T-lymphocytes and B-lymphocytes isolated from the peripheral blood of 10 healthy females. Array data were processed and differential methylation identified using NIMBL software. Validation of array data was performed by bisulfite Pyrosequencing. Genome-wide DNA methylation was initially determined by analysis of LINE-1 sequences and was higher in B-lymphocytes than matched T-lymphocytes (69.8 vs. 65.2%, p ≤ 0.01). Pairwise analysis identified 679 CpGs, representing 250 genes, which were differentially methylated between T-lymphocytes and B-lymphocytes. The majority of sites (76.6%) were hypermethylated in B-lymphocytes. Pyrosequencing of selected candidates confirmed the array data in all cases. Hierarchical clustering revealed perfect segregation of samples into two distinct clusters based on cell type. Differentially methylated genes showed enrichment for biological functions/pathways associated with leukocytes and T-lymphocytes. Our work for the first time shows that T-lymphocytes and B-lymphocytes possess intrinsic differences in DNA methylation within a restricted set of functionally-related genes. These data provide a foundation for investigating DNA methylation in diseases in which these cell types play important and distinct roles

    TRIO gene segregation in a family with cerebellar ataxia

    Get PDF
    Aim of the study: To report a family with a novel TRIO gene mutation associated withphenotype of cerebellar ataxia. Materials and methods: Seven family members of Caribbean descent were recruited through our ataxia research protocol; of the family members, the mother and all 3 children were found to be affected with severe young-onset and rapidly progressive truncal and appendicular ataxia leading to early disability. Array comparative genomic hybridization, mitochondrial DNA analysis, and whole-exome sequencing were performed on 3 of the family members (mother and 2 daughters). Results: While the maternal grandmother, great uncle and great aunt were unaffected, the mother and 3 children displayed cognitive dysfunction, severe ataxia, spasticity, and speech disturbances. Age of onset ranged between 3 and 17 years, with average current disease duration of 21 years. Whole-exome sequencing showed a variant p.A1214V in exon 22 of the TRIO gene in 3 of the family members. Array comparative genomic hybridization and mitochondrial DNA analysis were normal. The same variant was later discovered in all but one family member. Conclusions and clinical implications: The TRIO p.A1214V variant is associated with cerebellar ataxia in the studied family; it was present in all affected and unaffected family members. Phenotype is severe and broad. Anticipation seems to be present (based on 2 affected generations). It is warranted to screen additional familial early-onset and rapidly progressive ataxia cases for this genotype. TRIO gene mutations may well represent a novel spinocerebellar ataxia subtype

    Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer

    Get PDF
    High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable disease with greater risks of recurrence and progression relative to their low-intermediate-grade counterparts. The molecular events, including those affecting the epigenome, that characterise this disease entity in the context of tumour development, recurrence and progression, are incompletely understood. We therefore interrogated genome-wide DNA methylation using HumanMethylation450 BeadChip-arrays in 21 primary HG-NMIBC tumours relative to normal bladder controls. Using strict inclusion-exclusion criteria we identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, representing 256 genes. Bisulphite Pyrosequencing validated the array data and examined 25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-intermediate-grade NMIBC. These analyses revealed significantly higher methylation frequencies in high-grade tumours relative to low-intermediate-grade tumours for the ATP5G2, IRX1 and VAX2 genes (p<0.05), and similarly significant increases in mean levels of methylation in high-grade tumours for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, TFAP2b, PRRX1, and HIST1H4F genes (p<0.05). Although inappropriate promoter methylation was not invariantly associated with reduced transcript expression, a significant association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts (p<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal bladder and low-intermediate-grade tumours. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination, with more conventional therapeutic options in the treatment of this clinically unpredictable disease

    TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 Ă— 1

    Synaptic Loss in Primary Tauopathies Revealed by [11 C]UCB-J Positron Emission Tomography.

    Get PDF
    BACKGROUND: Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES: We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS: Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS: Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS: We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
    • …
    corecore