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Abstract 

Multiple reports now describe changes to the DNA methylome in rheumatoid arthritis 

and in many cases have analyzed methylation in mixed cell populations from whole 

blood. However, these approaches may preclude the identification of cell type-specific 

methylation, which may subsequently bias identification of disease-specific changes. To 

address this possibility, we conducted genome-wide DNA methylation profiling using 

HumanMethylation450 BeadChips to identify differences within matched pairs of T-

lymphocytes and B-lymphocytes isolated from the peripheral blood of 10 healthy 

females. Array data were processed and differential methylation identified using 

NIMBL software. Validation of array data was performed by bisulfite Pyrosequencing. 

Genome-wide DNA methylation was initially determined by analysis of LINE-1 

sequences and was higher in B-lymphocytes than matched T-lymphocytes (69.8 vs. 

65.2%, p ! 0.01). Pairwise analysis identified 679 CpGs, representing 250 genes, which 

were differentially methylated between T-lymphocytes and B-lymphocytes. The 

majority of sites (76.6%) were hypermethylated in B-lymphocytes. Pyrosequencing of 

selected candidates confirmed the array data in all cases. Hierarchical clustering 

revealed perfect segregation of samples into two distinct clusters based on cell type. 

Differentially methylated genes showed enrichment for biological functions/pathways 

associated with leukocytes and T-lymphocytes. Our work for the first time shows that 

T-lymphocytes and B-lymphocytes possess intrinsic differences in DNA methylation 

within a restricted set of functionally-related genes. These data provide a foundation for 

investigating DNA methylation in diseases in which these cell types play important and 

distinct roles.  
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Introduction 

DNA methylation, one of several prototypical epigenetic mechanisms, regulates gene 

expression without imposing alterations to the underlying nucleotide sequence. It is 

important in a variety of fundamental biological processes
1-3

 and in humans occurs 

almost exclusively on cytosines in the context of cytosine-guanine dinucleotides 

(CpGs). These dinucleotides are found to cluster at high density in regions of DNA 

termed CpG islands, and are often associated with gene promoters.4,5 With particular 

exceptions, they are typically not methylated in transcriptionally competent genes.
6
 

Conversely, methylation of promoter-associated CpGs is frequently associated with 

transcriptional repression and gene silencing.
6
 

 

There is now compelling evidence that aberrant DNA methylation is involved in a 

variety of human diseases, most notably in cancer etiology and, more recently, a 

growing spectrum of autoimmune disorders that include rheumatoid arthritis (RA). 

Distinct leukocyte populations, particularly lymphocytes and their subsets, play a 

pivotal role in RA pathogenesis, driving autoimmunity and chronic inflammation. 

Levels of global DNA methylation have been found to be altered in lymphocytes and 

peripheral blood mononuclear cells from patients with RA.
7-9

 Moreover, others have 

also reported aberrant methylation in RA, but in these cases have examined individual 

genes and using DNA samples derived from whole blood or the mononuclear cell 

fraction.
10-15

 Although these studies have identified genes potentially involved in RA 

pathogenesis, they are not able to consider the distinct roles of individual leukocyte 

populations. Furthermore, analysis of mixed cell samples may preclude the 

identification of important cell type-specific and disease-specific methylation changes 
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due to the inherent cellular heterogeneity. Indeed, this view is supported by recent 

evidence indicating that leukocyte heterogeneity may be a confounder for DNA 

methylation analyses on whole blood,
16

 and that individual leukocyte populations show 

evidence of differences in methylation.
17

 In this context, a recent genome-wide study in 

RA by Liu et al
18

 utilized a statistical algorithm to estimate and adjust for blood 

leukocyte proportions, concluding this to be a critical step for downstream bioinformatic 

analyses.  

 

It is clear therefore that the examination of individual leukocyte populations that drive 

disease is an important step towards better understanding the role of DNA methylation 

in conditions such as RA. A prerequisite to this goal must first be to define the intrinsic 

differences in methylation between individual leukocyte populations. In the current 

work, we have taken a stringent methodological approach to address these issues by 

defining genome-wide DNA methylation profiles in highly purified matched pairs of T-

lymphocytes and B-lymphocytes isolated from the blood of healthy individuals. 
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Results 

450K array technical validation 

Genome-wide DNA methylation at 485,577 CpG sites (99% of RefSeq genes), was 

examined using the HumanMethylation450 BeadChip  (henceforth referred to as “450K 

array” or “array”; Illumina Inc.) to identify differences in methylation between matched 

pairs of T-lymphocytes and B-lymphocytes isolated from the blood of ten healthy 

females. We first performed a technical validation of the array data using an 

independent technique, in this case, sodium bisulfite Pyrosequencing. To this end, five 

CpGs were selected at random, from three separate genes (AMN, HMOX2 and 

PM20D1), which represented the spectrum of possible array β-values (0 to 1). These 

sites, which were analyzed in paired samples from seven of the ten individuals chosen 

randomly, revealed excellent correlation between array β-values and methylation 

determined by Pyrosequencing (Spearman’s r = 0.952, p < 0.00001) (Figure 1). Since 

the correlation was apparent across the spectrum of β-values it is unlikely to be 

consequent to the dominance of extreme values.
19

 

 

Assessment of global DNA methylation 

Methylation of the LINE-1 retrotransposon is frequently used as a surrogate measure of 

global DNA methylation levels.
20,21

 Using sodium bisulfite Pyrosequencing we 

quantified methylation across 3 adjacent CpG sites within the LINE-1 sequence. Mean 

LINE-1 methylation was similar in each individual for each specific cell type; however, 

a subtle difference between the cell types was observed, 65.2% in T-lymphocytes and 

69.8% in B-lymphocytes (Figure 2). Similar levels of methylation have been reported 

for peripheral blood leukocytes.
22

 We noted that LINE-1 methylation was consistently 
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higher in B-lymphocytes for each of the three CpGs inspected. Although these 

differences were subtle they were statistically significant at individual sites and also 

collectively (p ! 0.01, Wilcoxon Signed Rank Test; Figure 2). A more gene-focused 

assessment of global methylation by calculating the average β-value across all array 

CpGs revealed no significant difference between the cell types (β = 0.562 and 0.558 in 

T-lymphocytes and B-lymphocytes, respectively, p > 0.2).  

 

A restricted set of differentially methylated CpGs distinguish T-lymphocytes and 

B-lymphocytes 

After initial array processing (described in the Methods), the remaining dataset 

comprised 484,616 CpGs. For robust identification of CpG loci displaying differential 

methylation between the two cell types, we first performed a series of filtering steps in 

which only those CpGs meeting stringent criteria were retained. The filtering criteria 

and number of CpGs remaining at each of the steps are presented in Figure 3. As a first 

step to improve the power of subsequent statistics, non-variable sites (CpGs for which 

β-values were either ! 0.2, or ≥ 0.8, in all 20 samples) were removed, an approach we 

and others have previously employed.
23-25

 For initial identification of CpGs showing a 

difference in methylation, we calculated the difference in β-value between B-

lymphocytes and T-lymphocytes for each of the ten paired samples. We next calculated 

the mean β-value difference and retained only those CpGs with a mean difference ≥ 0.2 

(step 2; Figure 3). Implementation of the subsequent steps resulted in the identification 

of 679 gene-associated CpGs displaying significant differences in methylation between 

T-lymphocytes and B-lymphocytes from the ten healthy individuals examined. 
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Hierarchical clustering and validation of candidate CpGs 

We next used hierarchical clustering to establish whether the β-value methylation 

profile for the 679 CpGs identified above was able to distinguish between the two cell 

types across the ten individuals. As presented in the heatmap and dendrograms in 

Figure 4, a perfect dichotomy was observed, with T-lymphocyte and B-lymphocyte 

samples segregating into two distinct clusters (indicated in the heatmap by green and 

red bars, respectively). Moreover, we observed this dichotomy when clustering was 

performed on the number of CpGs identified at each successive stage of the filtering 

process, from step 3 onward and identifying in this case 2,306 statistically significant 

CpGs (Supplementary Figure 1). The data therefore clearly show that the observed 

differences in methylation are highly consistent between the T- and B-lymphocytes in 

each of the ten individuals examined. 

 

Closer inspection of the 679 CpGs revealed that the majority (520 CpGs; 76.6%) 

showed higher methylation in B-lymphocytes (summary details are provided in Table 

1). The observed differences in mean β-value were in many cases pronounced 

(maximum difference of 0.86) and approximately half of the CpGs identified 

demonstrated a β-value difference of at least 0.5 (326; 48.0%) and/or were associated 

with a bona fide CpG island (326; 48.0%).
26

 In total, 250 genes were represented by the 

679 CpGs, with a maximum of 18 CpGs in any one gene (a complete list of CpGs/genes 

and associated β-values is provided in Supplementary Table 1). Table 2 identifies the 

20 genes displaying the largest methylation differences between the cell types (top 10 

hypermethylated genes in each cell type). Of particular note, numerous genes showing 

high methylation in B-lymphocytes and low methylation in T-lymphocytes were those 
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with known T-lymphocyte-specific expression/function, such as the CD3D and CD3G 

genes (subunits of the CD3 T-cell co-receptor). 

 

For independent validation of the candidate genes identified in our genome-wide 

approach, we selected eight which showed large methylation differences between the 

cell types and which also contained at least 2 differentially methylated CpGs that could 

be sequenced simultaneously; four genes that were hypermethylated in B-lymphocytes 

(CD3G/D, DENND2D, GIMAP7 and PITPNC1) and four that were hypermethylated in 

T-lymphocytes (CLPTM1L, DDAH2, RNH1 and SLC7A5). Validation was performed 

by sodium bisulfite Pyrosequencing (assay details are provided in Supplementary 

Table 2). Figure 5 displays data for one representative CpG from each gene examined. 

In each case, the large statistically significant differences observed between the cell 

types by array β-values were accurately replicated by Pyrosequencing (p < 0.01 for each 

CpG/gene). This was also true for each of the CpGs analyzed in each gene, as 

exemplified by the multiple CpGs in RNH1 and PITPNC1 (p < 0.01; Figure 6). 

Validation across these eight candidate genes reinforces the robustness of the array data 

and our approach to identify sites differentially methylated between T-lymphocytes and 

B-lymphocytes. 

 

Differentially methylated genes show enrichment for immune and leukocyte-

specific characteristics. 

To explore the functional characteristics of genes identified as differentially methylated 

between T-lymphocytes and B-lymphocytes, we examined gene ontologies and 

biological pathways using the online software DAVID (Database for Annotation, 
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Visualization and Integrated Discovery).
27,28

 Results from these analyses are provided in 

Supplementary Tables 3-5. Analysis of the 250 candidate genes revealed significant 

enrichment for multiple ontology terms (Supplementary Table 3). Thirty-two terms 

remained significant following adjustment for multiple comparisons and, of note, half of 

these (16/32) specifically related to ‘T-cell’, ‘Lymphocyte’ or ‘Leukocyte’ categories. 

Similar results identifying T-lymphocyte, leukocyte and immune related categories were 

obtained when we performed clustering on annotation terms (for example ‘T-cell 

receptor complex’ and ‘T-cell activation’; Supplementary Table 4), and also when we 

interrogated the gene set for enrichment of biological pathways (for example ‘T-cell 

receptor signaling pathway’ and ‘T helper cell surface molecules’; Supplementary 

Table 5). Genes displaying disparate methylation between the cell types are thus 

enriched for lymphocyte-related functions. 
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Discussion 

DNA methylation represents one of several principal targets for epigenetic change and 

acts in concert with other epigenetic modifications to regulate gene expression. A 

burgeoning literature describes these types of change in multiple diseases, including 

those with an autoimmune component such as RA, in which leukocytes are known to 

play a pivotal role. The majority of previous studies examining methylation in 

leukocytes from RA patients have employed DNA extracted from whole blood or the 

mononuclear cell fraction.
7-15,18

 However, in these cases cellular heterogeneity may be a 

confounding factor. To determine if intrinsic differences in methylation are a feature of 

individual leukocyte populations, we compared genome-wide DNA methylation profiles 

in matched pairs of T-lymphocytes and B-lymphocytes isolated from the blood of 

healthy individuals. Through this approach, our unequivocal observation is that a 

restricted set of CpGs in functionally-related genes show differential methylation 

between T-lymphocytes and B-lymphocytes, and define a DNA methylation signature 

that accurately distinguishes the two lymphocyte types. 

 

We identified a set of 679 gene-associated CpGs, representing 250 unique genes, which 

displayed altered methylation between T-lymphocytes and B-lymphocytes. For many of 

these sites striking differences in methylation were observed (β-value differences up to 

0.864), resulting in the perfect segregation of T- and B-lymphocytes into two distinct 

clusters. In common with other tissues/cell types, the majority of CpG islands in T-

lymphocytes and B-lymphocytes are unmethylated.
34,35

 There is also evidence from a 

variety of different tissues and cell types, including leukocytes, that some CpG islands 

show tissue-specific methylation.
36,37

 In our study, a small proportion (9%) of the 679 
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CpGs differentially methylated between T- and B-lymphocytes were located within a 

bona fide CpG island (as defined by Takai and Jones
26

). Of interest however, 

approximately three-times as many CpGs (25.3%) resided within the associated CpG 

island shores, with a further 13.7% within island shelves. Thus, our data indicate that 

the majority of intrinsic differences in methylation between T-lymphocytes and B-

lymphocytes occur not within CpG islands per se but within the shores surrounding 

these islands (!2 kb from the island). Of particular note, the importance of these CpG 

island “associated regions” in the context of gene expression has recently been 

described
38

 and is worthy of further investigation. Interestingly, analysis of global DNA 

methylation, using methylation of the LINE-1 retrotransposon as a surrogate measure, 

revealed marginal, yet statistically significant higher methylation in B-lymphocytes. To 

our knowledge this comparative increase has not previously been identified, and it is 

currently unclear as to its significance. 

 

Those genes identified as unmethylated in T-lymphocytes but hypermethylated in B-

lymphocytes included a significant number with known T-lymphocyte expression and 

functionality, such as ITK (a T-lymphocyte kinase), CD2 (early T-lymphocyte marker), 

and the genes for the delta, gamma and epsilon subunits of the CD3 T-cell co-receptor 

(CD3D, CD3G and CD3, respectively) which is expressed exclusively on T-

lymphocytes. Although not experimentally addressed in this study, our data suggest 

methylation-based epigenetic regulation of the CD3 locus, a finding that has recently 

been reported for leukocyte subsets.
17

 Analysis of functional enrichment by examining 

gene ontologies and pathways confirmed the predominance of genes associated with 

lymphocyte and leukocyte functioning amongst those differentially methylated between 
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the lymphocyte types. Similar enrichment of leukocyte/lymphocyte genes was 

previously reported by Reinius and colleagues,
17

 but in individual comparisons of each 

cell type with methylation in whole blood.  

 

In our investigation and for the purpose of defining intrinsic genome-wide differences in 

methylation between T-lymphocytes and B-lymphocytes, we adopted a stringent 

methodological approach. First, we isolated the individual cell populations using a 

validated technique that achieved mean purity in excess of 99% and 93% for each cell 

type respectively. Second, we implemented a series of stringent filtering criteria and 

independent validation to robustly identify those sites/genes displaying the most 

significant differences in methylation between the lymphocyte types. Finally, we only 

considered a gene to show altered methylation between the cell types if at least two 

CpGs from the same gene demonstrated statistically significant β-value differences ≥ 

0.2 and in the same direction (i.e. higher/lower in the same cell type), as used with 

success in a previous investigation from our laboratory.
23

 Independent validation of 19 

CpGs from eight selected candidate genes confirmed the large differences observed, and 

emphasizes the robustness of our data.  

 

Previous studies have reported subtle but significant differences in DNA methylation 

between tissue-types and between individuals,
25

 and additional reports provide evidence 

for associations of this epigenetic change with demographical factors such as age, 

gender and ethnicity,
39,40

 and lifestyle factors including smoking.
41,42

 Herein, and partly 

prompted by this literature, we focused our analyses on two lymphocyte populations in 

a carefully selected and closely matched, albeit small, cohort of healthy individuals 



14 

(Caucasian, non-smoking females, approximately 50-55 years of age). With regard to 

the limited variation in subject age, inspection of the results from hierarchical clustering 

revealed no evidence to suggest that younger and older individuals clustered separately. 

We are confident therefore, that our findings are not unduly influenced by potentially 

confounding variables such as those discussed above. 

 

The important issue of cellular heterogeneity as a confounder for DNA methylation 

analyses of blood-derived DNA has previously been recognised.
16-18

 Indeed, in the 

context of disease, underlying changes in the proportion of the different leukocyte 

populations may bias the identification of disease-specific changes in methylation. To 

address this issue a statistical algorithm has recently been described
43

 and provides an 

accurate method to estimate and adjust for leukocyte proportions in genome-wide DNA 

methylation studies.
18,43

 However, although this approach represents a significant 

advance, it is not able to determine the particular leukocyte populations in which 

disease-specific changes in DNA methylation occur. In these cases these changes 

represent an important question for diseases where different, specific, leukocyte 

populations play central roles in the disease process. In our own study, we have first set 

out to establish the intrinsic differences in methylation between matched pairs of 

purified T- and B-lymphocytes from healthy individuals. In this way we provide a 

foundation from which disease-specific changes of DNA methylation in these cell types 

may be determined.  

 

In summary, we have presented a unique genome-wide DNA methylation signature that 

accurately distinguishes healthy T-lymphocytes from B-lymphocytes. We recognize that 
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it will be important for future efforts to define methylation levels and disease-specific 

aberrations in these cell populations in RA patients, and to perhaps extend these types of 

analyses to individual cell subsets. The different T-helper subsets, for example, will be 

of particular interest given their distinct and multifaceted role in RA. 
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Patients and Methods 

Patients 

Peripheral blood samples (30 ml, EDTA) were collected from 10 healthy female 

Caucasians. Donors were recruited from the hospital staff population at the Haywood 

Rheumatology Centre, Stoke-on-Trent, and gave prior written informed consent. Each 

donor completed a short questionnaire to establish basic demographical information and 

to provide information on their current health status. The average age of the group was 

52.1 ± 5.0 years (mean ± SD) and none were current smokers. Individuals who reported 

any musculoskeletal or inflammatory-related conditions were excluded. The study was 

approved by the East Midlands (Derby) Research Ethics Committee.  

 

Isolation of individual lymphocyte populations 

Peripheral blood mononuclear cells were isolated from fresh whole blood samples by 

density gradient centrifugation using Histopaque-1077 (Sigma-Aldrich). CD3
+
 T-

lymphocytes were purified from the mononuclear cell fraction using anti-CD3 magnetic 

microbeads, with subsequent isolation of CD19
+
 B-lymphocytes from the negative 

portion using anti-CD19
+
 magnetic microbeads (MiniMACS

®
 separation system; 

Miltenyi Biotec). We chose to use positive selection as this has previously been 

demonstrated to be superior for array-based analyses of leukocytes
44

 and has minimal 

effects on leukocyte activation.
45-48

 All separations were performed according to the 

manufacturer’s instructions (Miltenyi Biotec). Cell preparations were immediately 

pelleted, lysed and homogenized (QIAShredder columns; Qiagen). Lysates were stored 

at –80°C. 
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Antibody staining and flow cytometry 

CD3
+
 T-lymphocytes and CD19

+
 B-lymphocytes from the ten donors were assessed for 

purity using flow cytometry. T-lymphocytes were stained with a murine phycoerythrin 

(PE)-labeled anti-CD3 IgG monoclonal antibody, and B-lymphocytes with a murine PE-

anti-CD20 IgG monoclonal antibody. Each sample was separately stained with the 

appropriate PE-labeled isotype-matched control antibody. Antibodies were purchased 

from Miltenyi Biotec. Samples were analyzed on a FACSort flow cytometer and raw 

data collected using CellQuest software (BD Biosciences). A forward scatter threshold 

of 180 was set and 10,000 events/sample were counted. Data were analyzed using 

Cyflogic software (version 1.2.1; CyFlo Ltd). Representative histograms of cell purity 

for each cell type are provided in Supplementary Figure 2. The mean ± SD purity for 

T-lymphocytes and B-lymphocytes from the ten donors was 99.6 ± 0.4% and 93.6 ± 

3.4%, respectively. 

 

Genome-wide DNA methylation analysis by Infinium 450K array 

Genomic DNA was extracted from thawed lysates using an AllPrep DNA/RNA Mini kit 

(Qiagen) according to the manufacturer’s instructions. Further purification and 

concentration of DNA was performed using ethanol-based precipitation reactions. DNA 

concentration was assessed using a NanoDrop ND-1000 spectrophotometer (Thermo 

Scientific). 

 

Quantification of genome-wide DNA methylation was conducted using Infinium-based 

HumanMethylation450 BeadChips. Each array enables simultaneous quantification of 

methylation at 485,577 unique CpGs across the genome, representing 21,231 RefSeq 
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genes (99% coverage), in 12 independent samples in parallel.
49

 Array hybridizations 

were performed by Gen-Probe Life Sciences Ltd (Manchester, UK) according to 

Illumina recommended protocols. Briefly, 650 ng of genomic DNA was sodium 

bisulfite converted using an EZ DNA Methylation Kit (Zymo Research). Subsequently, 

4 µl of bisulfite-converted DNA was hybridized to 450K arrays following the Illumina 

Infinium HD Methylation protocol. Each sample was arrayed once. Arrays were 

scanned using an Illumina iScan and image intensities extracted using the 

GenomeStudio Methylation Module (version 1.8.5). The methylation status of each 

CpG/probe was reported as a methylation β-value, where β is defined as the ratio of the 

methylated signal intensity over the summed intensity of the methylated and 

unmethylated signals + 100.
49

 β-values were reported on a continuous linear scale 

ranging from 0 (unmethylated) to 1 (completely methylated). 

 

Whole genome amplification and touchdown PCR 

Sodium bisulfite-converted DNA samples used on the arrays were separately used for 

validation of array data and to confirm the methylation status of identified candidate 

CpGs/genes. To increase template quantity, samples were first subjected to whole 

genome amplification according to a protocol described by Mill et al.
50

 Briefly, 1 µl 

bisulfite-converted DNA was amplified by polymerase chain reaction (PCR) using 

GoTaq Flexi DNA polymerase and buffer (Promega), dNTPs (Bioline) and random 15-

mer oligonucleotide primers (200 pmoles; Life Technologies). Thermal cycling 

conditions were: 98°C for 3 minutes, followed by 50 cycles of 98°C for 1 minute, 37°C 

for 2 minutes and 55°C for 4 minutes, with a ramping rate of 0.1°C/second prior to each 

denaturation and extension step. 
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PCR amplicons that encompassed CpGs of interest were generated from whole genome 

amplified DNA using touchdown PCR.
51,52

 Forward, reverse and sequencing primers 

specific for bisulfite-converted DNA were designed using PyroMark Assay Design 

software (version 2.0; Qiagen) and were purchased from Biomers.net (primer sequences 

are provided in Supplementary Table 2). In each 25 µl PCR reaction, 2-4 µl whole 

genome-amplified DNA was amplified with the appropriate forward and reverse 

primers, as we have described previously.
53

  

 

Validation by sodium bisulfite Pyrosequencing 

Methylation at individual CpG sites was quantified by Pyrosequencing of bisulfite-

converted PCR-amplified DNA using a PyroMark Q24 instrument (Qiagen). 

Pyrosequencing was performed according to the manufacturer’s instructions and as we 

have previously described.
23,53

 The sequence to analyze for each CpG/gene is provided 

in Supplementary Table 2 and all assays included one or more control dispensations to 

confirm sequence identity and completeness of bisulfite conversion. Data were analyzed 

using PyroMark Q24 software (v 2.0.6., build 20; Qiagen). 

 

Data analysis 

Array data were analyzed using NIMBL software.
54

 Each array passed initial quality 

control assessment based on the performance of internal array controls, and the 

distribution of β-values across all 485,577 CpGs was found to be similar in each 

sample. All CpGs for which one or more of the 20 samples displayed detection p-values 

> 0.05 (indicating an unreliable site) or presented with missing β-values were excluded. 
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As we have described previously, we considered it a more robust approach to remove 

from the dataset CpGs that failed in any one of the samples rather than excluding 

individual failed CpGs from specific samples.
24

 To adjust for the observation that β-

values derived from Infinium II probes on the 450K array can be less sensitive than 

those generated from Infinium I probes, NIMBL was used to perform ‘peak-based 

correction’ as devised by Dedeurwaerder et al.
55

 

 

Criteria for identification of differentially methylated CpGs are described in detail in the 

Results. Statistical analysis of DNA methylation at individual CpG sites was compared 

between T-lymphocytes and B-lymphocytes using paired t-tests. Correction for multiple 

testing was performed using the false discovery rate (FDR) adjustment of Benjamini 

and Hochberg,
29

 with adjusted p-values < 0.05 considered significant. Euclidian-based 

hierarchical clustering of differentially methylated CpGs was performed using Genesis 

software (v1.7.6).
56

 Differentially methylated genes were assessed for enrichment of 

gene ontology terms and biological pathways using DAVID online software.
27,28

 

Additional statistical analyses were performed using NCSS 2000 (NCSS LCC). P-

values < 0.05 were considered significant. 
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Figure legends 

Figure 1. Technical validation of 450k array data by sodium bisulfite 

Pyrosequencing. Correlation of DNA methylation as measured by array β-value and by 

bisulfite Pyrosequencing for 70 individual sites in T-lymphocytes and B-lymphocytes 

from seven of the ten healthy individuals (5 CpGs were selected at random, from three 

separate genes: HMOX2: cg14951292, AMN: cg09616556, PM20D1: cg24503407, 

cg07167872, cg11965913). T- and B-lymphocytes are shown as circles and crosses, 

respectively. Spearman’s r = 0.952, p < 0.00001. 

 

Figure 2. LINE-1 DNA methylation in matched pairs of T-lymphocytes and B-

lymphocytes. Sodium bisulfite Pyrosequencing was used to quantify methylation at 

three CpG sites within LINE-1 repetitive sequences in purified T-lymphocytes and B-

lymphocytes from ten healthy individuals. T- and B-lymphocytes are shown as circles 

and crosses, respectively. The mean level of methylation for each CpG site in each cell 

population is shown by the short black horizontal bar in each case.  

* p ! 0.01 (Wilcoxon Signed-Rank Test). 

 

Figure 3. Criteria for filtering and identification of CpGs differentially methylated 

between paired T-lymphocyte and B-lymphocyte samples. The starting number of 

484,616 CpGs was derived through removal of CpGs with high detection p-values (p > 

0.05) and those with missing β-values, as described in the Methods. 

† ‘Change’ refers to a methylation difference which fulfilled all preceding filtering 

steps. 
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‡ ‘Change in the same direction’ refers to multiple CpGs from one gene all showing 

either hyper- or hypomethylation in one cell type as compared with the other cell type. 

 

Figure 4. Heatmap and clustering for the 679 CpGs identified as differentially 

methylated. CpG sites identified by 450K array analysis as differentially methylated 

between paired T-lymphocytes (green bar) and B-lymphocytes (red bar) were analyzed 

by hierarchical clustering. Each row represents an individual CpG site and each column 

a different sample (listed beneath the heatmap). Branches of the dendrograms indicate 

similarity between CpGs (rows) and samples (columns). Color gradation from yellow to 

blue represents low to high DNA methylation respectively, with β-values ranging from 

0 (no methylation; yellow) to 1 (complete methylation; blue). Sample order, left-to-

right: B-lymphocytes: HC03, 10, 04, 09, 11, 14, 08, 12, 16, 17;  and T-lymphocytes: 

HC03, 08, 09, 11, 12, 04, 14, 16, 10, 17. 

 

Figure 5. Validation of differentially methylated CpG candidates identified by 

450K array analysis. Sodium bisulfite Pyrosequencing was used to confirm candidate 

genes/CpGs that were differentially methylated between T-lymphocytes and B-

lymphocytes in all ten healthy individuals. CpG sites in four genes that were 

hypermethylated in T-lymphocytes (A) and four genes that were hypermethylated in B-

lymphocytes (B) were selected from the array candidates. T- and B-lymphocytes are 

shown by circles and crosses, respectively. Gene names are shown on the x-axis, where 

for each gene methylation values are shown for the array (left) and Pyrosequencing 

(right). The mean values are defined by the horizontal black bar in each case. The 

methylation differences observed between T-lymphocytes and B-lymphocytes by 



31 

Pyrosequencing analysis were statistically significant for each of the eight CpGs/genes 

examined (p < 0.01, Wilcoxon Signed-Rank Test). 

Abbreviations: Pyro., bisulfite Pyrosequencing. 

 

Figure 6. Representative plots displaying validation of multiple array CpGs within 

two candidate genes by sodium bisulfite Pyrosequencing analysis. Four CpGs within 

the RNH1 gene (A) and three within PITPNC1 (B), all of which demonstrated 

significant differences in methylation between T-lymphocytes and B-lymphocytes by 

array analysis, were examined. T- and B-lymphocytes are shown as circles and crosses, 

respectively. CpG identifiers are shown on the x-axis (in each case, the first site shown 

for RNH1 (A) and PITPNC1 (B) is the site depicted in Figure 5A and 5B, respectively). 

For each site, methylation values are shown for the array (left) and Pyrosequencing 

(right). The mean values are defined by the horizontal black bar in each case. The CpG 

sites are displayed in the 5’ to 3’ direction, with the four sites in RNH1 covering 20-bp 

and three sites in PITPNC1 covering 45-bp. The methylation differences observed 

between T-lymphocytes and B-lymphocytes by Pyrosequencing analysis were 

statistically significant for each of the CpGs in each gene examined (p < 0.01, Wilcoxon 

Signed-Rank Test). 

Abbreviations: Pyro., bisulfite Pyrosequencing. 

 

Supplementary Figure 1. Heatmap and clustering for the 2,306 CpGs identified as 

differentially methylated. Sites on the 450K array were identified as differentially 

methylated between paired T-lymphocyte (green bar) and B-lymphocyte (red bar) 

samples at step 3 of the filtering flow diagram. Each row represents an individual CpG 
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site and each column a different sample (listed beneath the heatmap). Branches of the 

dendrograms indicate similarity between CpGs (rows) and samples (columns). Color 

gradation from yellow to blue represents low to high DNA methylation respectively, 

with β-values ranging from 0 (no methylation; yellow) to 1 (complete methylation; 

blue). Sample order, left-to-right: B-lymphocytes: HC03, 10, 04, 09, 11, 14, 08, 12, 16, 

17;  and T-lymphocytes: HC03, 08, 09, 11, 10, 12, 04, 14, 16, 17. 

 

Supplementary Figure 2. Representative flow cytometry histograms depicting cell 

purity for the T-lymphocyte and B-lymphocyte isolation procedures. The purity of 

each T-lymphocyte and B-lymphocyte isolation procedure was assessed quantitatively 

by flow cytometry. Shown for each of three healthy individuals – HC08 (red trace), 

HC12 (blue trace) and HC16 (green trace) – are cell purity histograms for the T-

lymphocyte (A) and B-lymphocyte (B) isolations. Representative isotype-matched 

control data (HC12) is shown by the black trace with grey fill, where the horizontal 

bracket indicates background staining for 95% of the isotype control which was used as 

the threshold to determine CD3/CD20 positive staining. T-lymphocytes were stained 

with a murine PE-labeled anti-CD3 IgG monoclonal antibody, and B-lymphocytes with 

a murine PE-anti-CD20 IgG monoclonal antibody. The overall mean ± SD purity for the 

study cohort (n = 10) was 99.6 ± 0.4% and 93.6 ± 3.4% for T-lymphocytes and B-

lymphocytes, respectively. 

 

Supplementary Table 1. 450K array β-value matrix and accompanying 

calculations for the 679 CpGs identified as differentially methylated between T-

lymphocytes and B-lymphocytes. 
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*Unless otherwise stated, values in the data matrix are methylation array β-values. The 

solid black horizontal line at row 522 separates CpGs hypermethylated in B-

lymphocytes (above) from those hypermethylated in T-lymphocytes (below). 

† FDR, false discovery rate adjustment for multiple comparisons.
29

 

 

Supplementary Table 2. List of genes, associated CpGs and primer sequences 

interrogated by bisulfite Pyrosequencing. 

*Further information that is not included here is available upon request. The horizontal 

dashed line at row 10 separates candidate genes hypermethylated in T-lymphocytes 

(above) and hypermethylated in B-lymphocytes (below). 

†The prefix 'b-' denotes biotin labeling at the 5' end of the primer. 

‡The sequence indicated is post-bisulfite conversion and the letters 'Y' and 'R' denote 

the cytosine of interrogated CpG sites ('Y' and 'R' refer to sequencing along the upper 

and lower strands respectively). 

Abbreviations: bp, base pairs  

 

Supplementary Table 3. Gene ontology categories identified by analysis using 

DAVID as significantly enriched in the 250 genes differentially methylated 

between T-lymphocytes and B-lymphocytes. 

*DAVID, Database for Annotation, Visualization and Integrated Discovery.
27,28

 Data 

shown are the output from running the Functional Annotation Chart tool on the three 

parent gene ontology domains (Biological Process, Cellular Component and Molecular 

Function) and all sub-categories contained within. Listed are all ontologies that were 

statistically significant at the p < 0.05 level using the EASE score.
27,28

 The solid black 
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horizontal line at row 34 indicates the cut-off for enriched ontology terms that remained 

statistically significant following adjustment for multiple comparisons using the FDR 

method (False Discovery Rate
29

). 

†Gene ontology terms listed belong to the parent ontology indicated, where BP, CC and 

MF indicate biological process, cellular component and molecular function, 

respectively. 

‡P-values are calculated from the EASE score, a modified version of Fisher's Exact 

Test.
27,28

 

 

Supplementary Table 4. Clustering using DAVID of similar gene ontology 

annotation terms, based on common membership of enriched genes, identified in 

the 250 genes differentially methylated between T-lymphocytes and B-

lymphocytes. 

*DAVID, Database for Annotation, Visualization and Integrated Discovery.
27,28

 Data 

shown are the output from running the Functional Annotation Chart tool on the three 

parent gene ontology domains (Biological Process, Cellular Component and Molecular 

Function) and all sub-categories contained within. Listed are all ontologies statistically 

significant at the p < 0.05 level using the EASE score.
27,28

 The solid black horizontal 

line at row 58 indicates the cut-off for clusters containing enriched ontology terms of 

which at least half remained statistically significant following adjustment for multiple 

comparisons using the FDR method (False Discovery Rate
29

).  

†Gene ontology terms listed belong to the parent ontology indicated, where BP, CC and 

MF indicate biological process, cellular component and molecular function, 

respectively. 



35 

‡P-values are calculated from the EASE score, a modified version of Fisher's Exact 

Test.
27,28

 

 

Supplementary Table 5. Pathways identified by analysis using DAVID as 

significantly enriched in the 250 genes differentially methylated between T-

lymphocytes and B-lymphocytes. 

*DAVID, Database for Annotation, Visualization and Integrated Discovery.
27,28

 Data 

shown are the output from running the Functional Annotation Chart tool on selected 

pathway databases. Listed are all pathways that were statistically significant at the p < 

0.05 level using the EASE score.
27,28

 The solid black horizontal line at row 13 indicates 

the cut-off for enriched pathways that remained statistically significant following 

adjustment for multiple comparisons using the FDR method (False Discovery Rate
29

). 

†Pathways listed are from the KEGG
30-32

, Biocarta and PANTHER
33

 databases, as 

indicated. 

‡P-values are calculated from the EASE score, a modified version of Fisher's Exact 

Test.
27,28
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Table 1. Summary characteristics of the 679 CpGs identified as differentially methylated between paired T-lymphocyte and B-lymphocyte 

samples by genome-wide DNA methylation analysis using 450K arrays.* 

 Hypermethylated in 

T-lymphocytes 

Hypermethylated in 

B-lymphocytes  

All differentially 

methylated CpGs 

CpGs differentially methylated† 159 (23.4) 520 (76.6) 679 (100) 

     In CpG islands 27 (17.0) 34 (6.5) 61 (9.0) 

     In CpG island shores 60 (37.7) 112 (21.5) 172 (25.3) 

     In CpG island shelves 14 (8.8) 79 (15.2) 93 (13.7) 

     Non-island CpGs 58 (36.5) 295 (56.7) 353 (52.0) 

Maximum β-value difference‡ 0.712 0.864 0.864 

CpGs with β-value difference ≥ 0.5 22 (13.8) 304 (58.5) 326 (48.0) 

Genes represented 67 183 250 

Maximum number of CpGs in a gene§ 6 18 18 

 

Unless otherwise indicated, all figures are the number (%). 

*Differentially methylated CpGs were identified according to the criteria described in the Results section and Figure 3. 
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†Annotation describing CpG island, shore and shelf status is derived from the University of California at Santa Cruz (UCSC) database. A 

significant association between cell type and the distribution of CpGs according to CpG island status was observed (p < 0.00001, Chi-

squared test).  

‡Maximum β-value difference refers to the largest mean difference in β-value observed for any single CpG between T-lymphocytes and B-

lymphocytes (mean value calculated from ten pairwise comparisons). 

§Refers to the maximum number of differentially methylated CpGs identified within a single gene. 
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Table 2. Annotation for the top 10 hypermethylated genes in T-lymphocytes and top 10 hypermethylated genes in B-lymphocytes, as 

determined by genome-wide DNA methylation analysis.* 

Gene symbol† 

CpGs 

differentially 

methylated 

Mean (range) 

β-value difference‡ 

Gene name† Functional summary† 

     

Hypermethylated in T-lymphocytes   

CTSZ 3 0.612  (0.55 - 0.70) Cathepsin Z Lysosomal cysteine proteinase 

RNF11 2 0.586  (0.56 - 0.61) Ring finger protein 11 Protein-protein interactions 

PIK3R2 2 0.576  (0.55 - 0.60) Phosphoinositide-3-kinase, 

regulatory subunit 2 (beta) 

Lipid kinase, growth signaling pathways 

 

FGR 3 0.566  (0.46 - 0.71) Feline Gardner-Rasheed sarcoma 

viral oncogene homolog 

Protein tyrosine kinase, cell migration and 

adhesion 

ELMO1 2 0.533  (0.50 - 0.57) Engulfment and cell motility 1 Phagocytosis and cell migration 

LYL1 2 0.519  (0.47 - 0.57) Lymphoblastic leukemia derived Transcription factor, blood vessel 



39 

sequence 1 maturation and hematopoiesis 

WIPI2 5 0.504  (0.33 - 0.71) WD repeat domain, 

phosphoinositide  interacting 2 

WD40 repeat protein, multiprotein complex 

assembly 

CD82 2 0.481  (0.46 - 0.50) CD82 molecule Transmembrane 4 superfamily glycoprotein 

LRP5 2 0.470  (0.27 - 0.67) Low density lipoprotein receptor-

related protein 5 

Lipoprotein receptor, skeletal homeostasis 

CLPTM1L 2 0.465  (0.46 - 0.47) CLPTM1-like Anti-apoptotic, lung cancer 

     

Hypermethylated in B-lymphocytes   

SPATA13 2 0.814  (0.79 - 0.84) Spermatogenesis associated 13 Guanine nucleotide exchange factor, cell 

migration and adhesion assembly 

CD3D 4 0.808  (0.76 - 0.85) CD3d molecule, delta (CD3-TCR 

complex) 

T-cell co-receptor, T-cell receptor signalling 

TNRC6B 3 0.788  (0.74 - 0.82) Trinucleotide repeat containing 6B RNA-mediated gene silencing 

CD3G 5 0.783  (0.75 - 0.85) CD3g molecule, gamma (CD3- T-cell co-receptor, T-cell receptor signaling 
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TCR complex) 

UBASH3A 7 0.775  (0.69 - 0.83) Ubiquitin associated and SH3 

domain containing A 

T-cell ubiquitin ligand, T-cell signaling 

FYB 4 0.767  (0.68 - 0.84) FYN binding protein T-cell adapter protein, IL-2 expression 

MGAT4A 3 0.756  (0.72 - 0.82) Mannosyl (alpha-1,3-)-

glycoprotein beta-1, 4-N-

acetylglucosaminyltransferase, 

isozyme A 

Glycosyltransferase, Golgi structural 

branching 

PLCG1 2 0.745  (0.69 - 0.80) Phospholipase C, gamma 1 Intracellular transduction of receptor-

mediated tyrosine kinase activators 

EXOC1 2 0.743  (0.69 - 0.79) Exocyst complex component 1 Exocytic vesicle targeting, cytoskeletal 

remodeling 

MPHOSPH9 2 0.734  (0.72 - 0.74) M-phase phosphoprotein 9 Cell cycle 

 

*Differentially methylated CpGs were identified according to the criteria described in the Results section and Figure 3. 

†The official gene symbol, gene name and stated function were retrieved from the NCBI Gene database (accessed May 2013). 
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‡The mean β-value difference was calculated as the average of the individual β-value differences determined for each differentially 

methylated CpG within the indicated gene (the difference for each individual CpG was calculated as described in the Results). 

 


