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Abstract 23 

High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable 24 

disease with greater risks of recurrence and progression relative to their low-intermediate-25 

grade counterparts. The molecular events, including those affecting the epigenome, that 26 

characterise this disease entity in the context of tumour development, recurrence and 27 

progression, are incompletely understood. We therefore interrogated genome-wide DNA 28 

methylation using HumanMethylation450 BeadChip-arrays in 21 primary HG-NMIBC 29 

tumours relative to normal bladder controls. Using strict inclusion-exclusion criteria we 30 

identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, 31 

representing 256 genes. Bisulphite Pyrosequencing validated the array data and examined 32 

25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-33 

intermediate-grade NMIBC. These analyses revealed significantly higher methylation 34 

frequencies in high-grade tumours relative to low-intermediate-grade tumours for the 35 

ATP5G2, IRX1 and VAX2 genes (p<0.05), and similarly significant increases in mean levels 36 

of methylation in high-grade tumours for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, 37 

TFAP2b, PRRX1, and HIST1H4F genes (p<0.05). Although inappropriate promoter 38 

methylation was not invariantly associated with reduced transcript expression, a significant 39 

association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts 40 

(p<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique 41 

HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal 42 

bladder and low-intermediate-grade tumours. The genes we identified hold significant 43 

potential as targets for novel therapeutic intervention either alone, or in combination, with 44 

more conventional therapeutic options in the treatment of this clinically unpredictable 45 

disease. 46 

Key words: High-grade Non-Muscle Invasive Bladder Cancer, Epigenetics, Methylation, 47 

HumanMethylation450 BeadChip Array, Gene Expression 48 
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Introduction 49 

Bladder cancer is the ninth most common cancer worldwide.1 The majority of bladder 50 

cancers are transitional cell carcinomas (TCC), of which 70-80% are non-muscle invasive 51 

(NMIBC) at presentation.2 Poorly differentiated ‘high-grade’ (HG)-NMIBC is a clinically 52 

important sub-type, accounting for approximately 10-15% of all NMIBCs at presentation.3, 4, 53 

These high-grade tumours are typically more aggressive than their low- and intermediate-54 

grade counterparts, manifest by higher rates of recurrence and progression to invasive and 55 

metastatic disease despite intensive and prolonged intravesical treatment.5, 6  56 

 57 

The majority of NMIBCs are thought to be consequent to, and represent initiation and 58 

progression from, a complex interplay between sporadic, environmental, and heritable risk 59 

factors, including those that impact upon genetic and epigenetic pathways. NMIBCs and 60 

muscle invasive bladder cancers (MIBCs) have been shown to develop independently (‘the 61 

two pathway model’) on the basis of gain of function fibroblast growth factor receptor 3 62 

(FGFR3) mutations in NMIBC, and loss of function mutations in retinoblastoma 1 (RB1) and 63 

tumour protein 53 (p53) in MIBC,7-10 and have been shown to evolve from different cell 64 

types. 11, 12 However, the molecular pathways responsible for the evolution, outgrowth and 65 

progression of HG-NMIBC have not been subject to comprehensive study or investigation; 66 

indeed, it is currently unclear whether HG-NMIBCs arise as a discrete disease entity, 67 

whether they represent step-wise progression from low-intermediate-grade NMIBC tumours, 68 

or whether they sit at a molecular crossroads between NMIBC and MIBC.7, 13 11 This 69 

uncertainty is illustrated by the findings that high-grade tumours harbour abnormalities in 70 

common with low-intermediate-grade NMIBC, such as mutations of FGFR3 and/or rat 71 

sarcoma viral oncogene homolog (RAS) pathway genes14, 15, but also display extensive 72 

genetic instability and compromised regulation of vital cellular processes more in keeping 73 

with MIBC.14, 16 74 
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Epigenetic modifications are frequently implicated in the development of human 75 

malignancies, and in these cases, are typically apparent as inappropriate gene promoter 76 

CpG island DNA methylation, histone tail modification(s), aberrant expression of micro- and 77 

long non-coding-RNAs, and less frequently, loss of gene body/intergenic methylation.17, 18 78 

These heritable modifications, or epimutations, impact upon gene expression either alone or 79 

in combination, and promote tumour evolution and/or progression by suppressing the 80 

expression of growth inhibiting and/or apoptosis promoting genes, and less frequently by 81 

leading to relaxed control of expression of growth promoting genes.17, 19, 20 82 

Epigenetic modifications and associated gene silencing have been shown in NMIBC, and 83 

specific patterns of DNA methylation, histone modifications and microRNA expression have 84 

been reported as associated with tumour growth characteristics, patient/clinical outcomes 85 

and with field defect phenomena.21, 22 However, the majority of these reports have described 86 

epigenetic changes in heterogeneous populations of NMIBC, with an abundance of low- and 87 

intermediate-grade tumours relative to high-grade tumours. With the exception of our recent 88 

candidate-gene study23 and a single report investigating the Myopodin A gene24, HG-89 

NMIBCs have not been considered as a discrete entity for the investigation of epigenetic 90 

modifications. 91 

In this study, we interrogated DNA methylation on a genome-wide scale using methylation 92 

BeadChip-array technology, in a unique cohort of HG-NMIBCs. Through comparisons with 93 

methylation levels and gene-expression in low/intermediate-grade tumours, we extend the 94 

current understanding of bladder cancer tumourigenesis and identify potential epigenetic 95 

mechanisms implicated in the development of high-grade NMIBC, and those that might 96 

represent novel therapeutic drug-targets. 97 

  98 
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Results 99 

Technical Validation of array by Pyrosequencing: 100 

Subsequent to array processing, normalisation and peak-based correction (see patients and 101 

methods), a technical validation was performed by comparing array-derived β-values with 102 

Pyrosequencing-derived methylation values. Across 120 data-points (5 CpGs, 24 samples) 103 

encompassing a broad range of array β-values, a strong positive correlation was found 104 

between the methylation values (Spearman’s rank correlation r=0.912, p<0.00001; 105 

Supplemental Figure S1). 106 

 107 

In-house filtering criteria: 108 

CpGs showing differential methylation in HG-NMIBC relative to normal bladder controls were 109 

identified following a series of stringent filtering criteria, as described previously and shown 110 

in Figure 1.25, 26 On the basis of these criteria, a total of 1,057 CpGs, representing 256 111 

genes, were identified as hypermethylated (≥0.4 β-value increase) in 15 or more of the 21 112 

high-grade tumours, relative to their mean values in the normal bladder controls. 113 

 114 

Hierarchical clustering analyses: 115 

The filtered dataset was next subject to unsupervised hierarchical cluster analysis (Figure 116 

2): the high-grade tumours cluster independently from the normal bladder control samples. 117 

In these cases, methylation is barely detectable within the normal bladder samples, whereas 118 

15 or more of the high-grade tumours show inappropriate methylation across all 1,057 CpG 119 

dinucleotides, spanning 256 gene-promoter-associated CpG islands (Supplemental Table 120 

S2).  121 

 122 
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Independent validation by Pyrosequencing: 123 

We next selected 25 genes for independent validation by Pyrosequencing on the basis of 124 

their frequent methylation in the discovery cohort that comprised 21 high-grade tumours. 125 

These analyses revealed similar frequencies and mean levels of methylation as those 126 

apparent from the BeadChip array for 24 of the 25 genes. As further confirmation, we 127 

extended the Pyrosequence analyses to an independent investigation cohort of 30 HG-128 

NMIBC tumours. Similar frequencies and mean levels of methylation between the discovery 129 

and investigation cohorts reinforced our confidence in the array-derived data (Supplemental 130 

Table S3). At this stage, and to assess for potential confounders, we assessed associations 131 

between patient demographic data and methylation patterns across these 25 genes, using 132 

separate multivariate models. No correlations were identified in these analyses, suggesting 133 

demographic factors did not significantly impact upon the methylation patterns identified 134 

(data not shown). 135 

 136 

Differential subtype-specific promoter methylation in NMIBC: 137 

We next determined methylation across the 25 genes described above in HG-NMIBC 138 

relative to that apparent in low-intermediate-grade tumours and in comparison to normal 139 

bladder controls (Supplemental Table S4). Similar to other groups27 28, we displayed these 140 

methylation data, across the high-grade and low-intermediate-grade tumours and normal 141 

controls, by heatmap (Figure 3). This demonstrated heterogeneous patterns of methylation 142 

across the 51 high- and 18 low-intermediate-grade tumours relative to the normal bladder 143 

controls. Gene-specific differences in methylation were apparent between the high-grade 144 

tumours and their low-intermediate-grade counterparts on visual inspection. Closer 145 

examination of these data showed that the differences appeared to impact on either the 146 

relative frequency and/or the mean levels of methylation between these tumour subtypes. As 147 
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examples of these differences, the ten most differentially methylated genes are shown in 148 

Table 1.  149 

 150 

Methylation frequencies in high- and low-intermediate-grade tumours: 151 

For ten of the genes we took forward for further analyses (ATP5G2, HIST1H4F, INSRR, 152 

IRF8, IRX1, PRDM14, PRRX1, TFAP2b, VAX2 and VSX1), there was an higher frequency of 153 

methylation in high-grade tumours versus low-intermediate grade tumours (Table 1). 154 

Moreover, the increases were statistically significant for the ATP5G2, VAX2 and IRX1 genes 155 

(p<0.05), and approached significance for the INSRR, IRF8, PRDM14 and VSX1 genes.  156 

 157 

Mean levels of methylation in high- and low-intermediate-grade tumours: 158 

The mean levels of methylation in the high-grade tumours were next assessed by 159 

Pyrosequencing (right-sided panel of Table 1, and Figure 4); for eight of the ten genes, 160 

mean levels of methylation were significantly greater in high-grade tumours relative to their 161 

low-intermediate-grade counterparts. In addition, and as low-intermediate-grade tumours 162 

were not subject to array analyses relative to normal bladder, further pairwise-testing was 163 

performed. This analysis identified significant differences between mean levels of 164 

methylation in the low-intermediate-grade tumours and normal bladder in four of the ten 165 

genes assessed. The range, distribution and mean levels of methylation are shown in 166 

Figure 4, and show for each of the genes, a stepwise trend toward increasing methylation 167 

from normal bladder to low-intermediate and high-grade tumours. 168 

 169 

Methylation-Associated Changes in Gene Expression: 170 
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Across the high-grade NMIBC tumours, sufficient sample was available for gene expression 171 

analyses for 17 of the 25 genes. With the exception of the ARHGEF4 gene, promoter-172 

associated CpG island methylation was negatively correlated with transcript expression for 173 

all genes assessed (data not shown). Furthermore, the presence of promoter methylation 174 

was significantly correlated with reduced transcript expression for the PON3, STAT5a and 175 

VAX2 genes (Spearman’s correlation coefficients -0.60, -0.50 and -0.48 respectively, all 176 

p<0.05). Conversely, promoter methylation was significantly positively correlated with gene 177 

transcript expression for the ARHGEF4 gene (Spearman’s correlation coefficient 0.62, 178 

p<0.05). Figure 5 shows the expression levels for these four genes across the high-grade 179 

tumours. 180 

 181 

Gene Ontology analysis of inappropriately methylated genes: 182 

Gene Ontology analyses of the 256 differentially methylated genes identified ‘over-183 

representation’ of multiple categories of biological processes, molecular functions and 184 

pathways. In particular, highly significant over-representation was identified for specific 185 

biological processes, including regulation of RNA polymerase II activity and DNA 186 

transcription, and for pathways involving cell adhesion and PI3K-Akt signalling 187 

(Supplemental Table S5). 188 

  189 
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Discussion 190 

In common with most other tumour types, bladder cancers harbour epigenetic aberrations 191 

which are frequently apparent as inappropriate DNA methylation.8, 22, 29 However, reports are 192 

limited and largely confined to heterogeneous patient cohorts of NMIBC or MIBC;30 despite 193 

their clinical importance, high-grade NMIBC tumours are rarely investigated as a discrete 194 

entity in the context of disease and/or subtype-specific epigenetic modifications.23 To 195 

address this, we performed genome-wide analyses of DNA methylation using BeadChip 196 

array technology in high-grade NMIBC, comprising a discrete cohort of tumours recruited at 197 

initial presentation. This analysis, the first ‘450K array’ interrogation in bladder cancer, 198 

revealed multiple and novel frequently differentially methylated genes in these tumours 199 

relative to normal bladder. Through Pyrosequence analysis of sodium bisulphite converted 200 

DNA, we extended our analyses to include independent cohorts of high- and low-201 

intermediate-grade tumours. These investigations confirmed the array-derived data for the 202 

high-grade tumours, and showed them as harbouring significantly increased frequencies 203 

and/or mean levels of gene-specific methylation relative to low-intermediate-grade tumours. 204 

Moreover, for some of the genes investigated, a significant inverse correlation between 205 

promoter methylation and gene expression levels was apparent and suggests their potential 206 

as targets for therapeutic intervention.29 31 32 207 

 208 

Initially we performed a technical validation of the discovery cohort data by Pyrosequence 209 

analysis of converted DNA.25 33 34 In common with previous reports and across multiple 210 

genes, these analyses confirmed and reinforced the array-derived data.34 35 36 These 211 

analyses also showed that for the majority of regions investigated, methylation extended to 212 

include contiguous promoter-associated CpG sites. On the basis of  previous reports from 213 

our own and other groups,37 38 we employed stringent criteria (β-value differences ≥0.4) to 214 

identify differentially methylated genes across multiple CpG sites; such criteria are more 215 
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consistently associated with bona fide changes in methylation, and are more likely to show 216 

associations with gene expression.37, 39 40, 41 217 

The analysis of the discovery cohort of high-grade NMIBC identified 1,057 CpGs, across 256 218 

gene-promoter-associated CpG islands. Cluster analysis and heat map display of these 219 

regions revealed extensive and frequent differential methylation in the tumours relative to 220 

normal bladder controls. As our study represents the first 450K analysis of high-grade 221 

bladder cancer a direct ‘like-for-like’ comparisons of our findings with those of other groups 222 

was not possible; however, the number of differentially methylated sites we identified 223 

appeared to be lower than those previously reported in other tumour types.42 43 Potential 224 

explanations for these findings are the tumour type per se and/or the stringency of our 225 

inclusion-exclusion criteria and definition of differential methylation.44  226 

For the genes identified, we performed gene ontology and KEGG pathway analyses. In 227 

these cases we identified significant over-representation of genes in processes and 228 

pathways previously reported by other groups as subject to epigenetically-mediated 229 

dysregulation in tumour development. For examples, these included transcription and cell 230 

signalling and adhesion45-47, suggesting possible similar roles in high-grade bladder tumours, 231 

and their validity as targets for further investigation. 232 

We next extended our investigation of multiple novel genes to an independent cohort of 233 

high-grade tumours, and a cohort of low-intermediate-grade tumours for comparison. Similar 234 

frequencies and mean levels of methylation, as determined by Pyrosequence analysis, were 235 

apparent within the discovery and investigation cohorts of high-grade tumours, suggesting 236 

our approach for the identification of candidates by array analysis was robust. Interestingly, 237 

many of the genes identified as novel and differentially methylated were also inappropriately 238 

methylated in low-intermediate-grade tumours. However, and despite the absence of genes 239 

as being exclusively associated with either high- or low-intermediate-grade tumours, the 240 

frequency and mean levels of gene-promoter methylation in the high-grade tumours were 241 
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significantly higher than in the low-intermediate-grade tumours. Indeed, similar observations 242 

with respect to differences in the frequencies of methylation between high- and low-grade 243 

bladder tumours were first suggested by Ibragimova et al.47 Similar subtype and/or grade-244 

associated differences have been reported in other tumour types including, pituitary, breast, 245 

and colon cancer subtypes.37, 48, 49 In our analysis of NMIBC it remains unclear whether the 246 

increase in frequency and/or mean levels of methylation in the more aggressive tumours 247 

represents a more rapid accumulation of epigenetic changes during tumour progression, or 248 

reflects distinct epigenetic pathways of tumour development and outgrowth.50, 51 Our findings 249 

may therefore reflect either of the described scenarios in the more aggressive (high-grade) 250 

tumours and suggests that these tumours are either consequent to progression from low-251 

intermediate-grade tumours, or are the progeny of aberrations in distinct epigenetic 252 

pathways within these NMIBC subtypes. Moreover, the identification of different patterns of 253 

methylation between tumours represents an important area for future investigation. In this 254 

case, methylation may hold promise as an ‘at diagnosis’ biomarker of long-term tumour 255 

outcome, similar to that described in colorectal, breast and lung cancers. 52-54 256 

Although many of the novel genes we identified have not been previously reported in 257 

bladder cancer, their inappropriate methylation, accompanied with gene-silencing, has been 258 

reported in the context of other tumour types and suggests potential roles as tumour 259 

suppressor genes.55, 56 57 To determine associations between methylation and gene 260 

expression, we confined our studies to genes showing frequent and/or high mean levels of 261 

methylation. For the majority of gene-transcripts we investigated, promoter methylation was 262 

negatively correlated with reduced transcript expression, although not significantly so (data 263 

not shown). However, as described by our own and other groups, this may reflect a 264 

passenger-driver phenomenon where, in the ‘passenger’ context, gene expression is not 265 

directly influenced by the observed epigenetic modification(s).58 59 However, for four of 266 

seventeen transcripts we examined, significant correlations between methylation and 267 

transcript expression were apparent. In these cases, and for the PON3, STAT5a and VAX2 268 
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genes, promoter methylation was significantly associated with reduced gene expression, 269 

whilst the converse was true for the ARHGEF4 gene. Such associations are similar to those 270 

described previously in multiple other cancers and in NMIBC. 20, 21 43  Indeed, for two of these 271 

genes, PON3 and STAT5a, previous studies in mice and cell-line models have described 272 

potential tumour suppressor roles.60 61 If this is the case, then these genes may represent 273 

important targets for further studies of functional the significance of methylation and reduced 274 

expression in a bladder tumour context, including in-vitro investigations of de-methylating 275 

agents designed to restore gene expression. 276 

In summary, we have presented the first comprehensive genome-wide DNA methylation 277 

analysis of NMIBC in a unique cohort of high-grade tumours. The study has reported an 278 

increase in the frequency and/or mean levels of methylation at gene promoter-associated 279 

CpG islands in high-grade tumours relative to their low-intermediate-grade tumour 280 

counterparts, that in some cases is associated with reduced gene expression. These 281 

findings suggest that epigenetic modifications, alone or in combination with other 282 

aberrations, are causal in the development and/or progression of this tumour type. Further 283 

studies are required to assess the functional significance of epigenetic changes in HG-284 

NMIBC; however, we suggest that the genes identified hold significant potential as targets 285 

for novel therapeutic interventions alone, or in combination, with conventional therapeutic 286 

options in the treatment of this clinically unpredictable disease. 287 

 288 

 289 

  290 
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Patients and methods 291 

Human tissue samples 292 

Primary tumour and normal bladder tissues used were provided by the Bladder Cancer 293 

Prognosis Programme (BCPP, National Research Ethics Service East Midlands - Derby 294 

06/MRE04/65.)62, the University of Birmingham Human Biomaterials Resource Centre 295 

(National Research Ethics Service (North West 5): 09/H1010/75), and the University 296 

Hospitals of North Midlands NHS Trust (National Research Ethics Service (South Central – 297 

Oxford C): 12/SC/0725). All samples were confirmed histologically as normal bladder 298 

urothelium (control, n=4), G3pT1 TCC (high-grade: discovery cohort n=21, investigation 299 

cohort n=30), and G1/2 pTa/1 TCC (low/intermediate-grade: n=18). As previously 300 

described23, patients received repeat bladder tumour resection (TURBT), cystectomy and/or 301 

intra-vesical therapy as recommended by European Association of Urology guidelines.63 All 302 

samples (details are provided in Supplemental Table S1) were stored at -80oC prior to 303 

nucleic acid extraction, as described below. 304 

 305 

DNA extraction and bisulphite modification 306 

Genomic DNA was extracted from tumour and control tissues using a standard phenol-307 

chloroform procedure 64, then bisulphite-converted using the EZ DNA Methylation Gold kit 308 

(Zymo Research) as we have previously described.37 Bisulphite-conversion of DNA was 309 

confirmed in all cases by successful PCR using primers specific to bisulphite-converted DNA 310 

(primer sequences in Supplemental Table S6). To increase the relative amount and stability 311 

of bisulphite-converted DNA, whole-genome amplification (WGA) was performed as 312 

previously described.37 313 

 314 

 315 
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Illumina 450K Methylation Bead-Array Analyses 316 

Bisulphite-converted DNA from 21 bladder tumours and three normal controls was 317 

hybridised to Infinium-based HumanMethylation450 BeadChip arrays (Illumina, San Diego, 318 

CA, USA) to quantify DNA methylation at approximately 480,000 CpG positions across the 319 

genome, representing more than 21,000 RefSeq genes. In this case, normal bladder was 320 

used as control for consistency with previous array analyses 35, 47, 65, and also to permit 321 

comparisons with earlier reports of non-muscle invasive bladder cancer. Arrays were 322 

processed according to the manufacturer’s instructions (performed by Barts and the London 323 

Genome Centre, UK), as described by us previously.66  324 

Raw array data were processed using GenomeStudio software and the bioinformatical 325 

platform ‘NIMBL’, as we 67, 68 and others69 have described. For each probe, the methylation 326 

status was reported as a methylation ‘β-value’, where ‘β’ is defined as the ratio of the 327 

methylated signal intensity over the summed intensity of the methylated and unmethylated 328 

signals + 100.40 β-values range from 0 (unmethylated) to 1 (fully methylated). NIMBL was 329 

used to perform ‘peak-based’ correction, to adjust for potential differences in array probe-330 

type sensitivity previously reported33; all comparative analyses of high-grade tumours to 331 

normal bladder controls, were performed on peak-based corrected β-values, as described by 332 

us previously.68  333 

Each array passed quality control assessment based upon the performance of internal 334 

controls and the distribution of β-values across all array CpGs. As previously described68, 335 

and represented by step 1 of Figure 1, we excluded all CpGs for which any of the 24 336 

samples displayed: (i) probe detection p-values >0.05 (unreliable probe data), or (ii) missing 337 

β-values (preventing analyses of all samples). We also excluded all CpG loci on allosomes 338 

(reducing confounding gender-based methylation differences). We used a series of stringent 339 

filtering criteria, shown in Figure 1 and described in the Results section, to identify 340 
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inappropriate methylation, defined as a β-value difference ≥0.4, in tumour samples relative 341 

to the mean of the normal bladder controls. 342 

 343 

Unsupervised hierarchical clustering using average linkage criteria was performed using 344 

Genesis software (v1.7.6).70 Gene Ontology (GO) analyses were performed using 345 

http://geneontology.org/ and http://gather.genome.duke.edu/, and Kyoto Encyclopaedia of 346 

Genes and Genomes (KEGG) analyses with http://www.genome.jp/kegg/ online platforms, 347 

respectively. Bonferroni correction71 was employed in all GO and KEGG pathway analyses. 348 

 349 

Technical validation of Methylation Bead-Chip Array Data 350 

Five CpG loci encompassing a broad range of β-values derived from 450k array analyses, 351 

were assessed by Pyrosequencing (described below), using identical samples, to 352 

independently validate the array data (β-values vs. methylation %). Correlation between the 353 

methods was assessed across a total of 120 CpGs using Spearman’s rank correlation, as 354 

shown in Supplemental Figure S1. Primer sequences are provided in Supplemental Table 355 

S6. 356 

 357 

Pyrosequencing™ of sodium bisulphite-converted DNA 358 

Validation of array data (discovery cohort) and further quantitative assessment of 359 

methylation in the independent (investigation) tumour cohort were performed by 360 

Pyrosequencing of sodium bisulfite-converted DNA, as previously described by us66, using a 361 

PyroMark Q24 Pyrosequencer, PyroMark Q24 Software 2.0 and PyroMark Gold Q24 362 

Reagents. Dependent on the specific gene, and the density of CpGs within their promoter-363 

associated CpG island, between five and nine consecutive CpG sites were assessed. 364 

Promoter methylation was defined in tumours if the mean level of methylation across the 365 

assessed CpG island was greater either than four standard deviations (4SD), or 20% above, 366 
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the mean of the normal controls.37 The number of tumours methylated for any given gene 367 

describes the frequency of methylation, whereas the mean percentage methylation per se of 368 

all of the CpGs surveyed within a gene describes the mean level of methylation. 369 

 370 

Quantitative RT-PCR 371 

Total RNA was extracted from control and tumour samples using a standard guanidinium 372 

thiocyanate-phenol-chloroform protocol 72. Complementary DNA (cDNA) was synthesised as 373 

described previously73. Thermal cycling using SYBR Green was as previously described74, 374 

with target genes normalised to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 375 

the endogenous control gene (Supplemental Table S6). Relative quantification of transcript 376 

expression was performed using the 2-∆∆ cycle threshold (CT) method75, and as previously 377 

described76. Reduced transcript expression in a tumour was defined where expression was 378 

at least 3-fold lower than the mean level of expression observed in control samples; the 379 

converse was true for increased transcript expression.37 38 77 380 

 381 

Non-Array Informatics and statistics. 382 

STATA (version 8, Stata Corporation, College Station, TX) was used to analyse methylation 383 

and gene expression data in tumour and normal cohorts using Fisher’s exact tests 384 

(frequency of methylation), Student’s t-tests (mean level of methylation), and Spearman 385 

correlation coefficients (associations between methylation and gene expression). p-values 386 

<0.05 were considered statistically significant. 387 

  388 
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Ethics Committee Approvals 389 

East Midlands - Derby: 06/MRE04/65. 390 

The University of Birmingham Human Biomaterials Resource Centre (National Research 391 

Ethics Service (North West 5): 09/H1010/75. 392 
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Figure Legends 636 

 637 

Figure 1. Array filtering steps. Summary of the steps implemented for the identification of 638 

CpGs hypermethylated in HG-NMIBC. The initial filtering steps (*) included exclusion of non-639 

significant probe data, probes with missing data and probes located on allsomes.  640 

RefSeq (National Center for Biotechnology Information Reference Sequence Database). 641 

CpG island based upon the UCSC genome browser definition from Gardiner-Garden and Frommer78.  642 

 643 

Figure 2. Unsupervised hierarchical clustering analysis of the 1,057 gene promter-644 

associated hypermethylated CpGs in HG-NMIBC. Heatmap and dendrogram of 645 

differentially methylated gene promoter-associated CpG sites identified by array analysis. 646 

The dendrogram above the heatmap separates normal bladder (green bar, n=3) and high-647 

grade-NMIBC bladder tumours (red bar, n=21). Each row represents an individual CpG 648 

locus, and each column represents a normal control or tumour sample (listed beneath the 649 

heatmap). The colour scale beneath the heatmap represents methylation status: 650 

unmethylated is yellow (β-value=0.0), and fully methylated is blue (β-value=1.0). 651 

 652 

Figure 3. Heatmap for 25 hypermethylated gene promoter-associated CpG islands. 653 

Pyrosequencing validation of 25 gene promoter-associated CpG islands, identified as 654 

frequently differentially methylated in high-grade tumours by 450k BeadChip-array analysis. 655 

As indicated above the heatmap, the four normal bladder controls are presented to the left-656 

side of the heatmap, followed by 18 low-intermediate-grade tumours, and 51 high-grade 657 

tumours (the combined discovery and investigation cohorts). Each row represents the 658 

promoter-associated CpG island of the indicated gene, and each colour block the mean level 659 

of methylation across the island. The colour scale beneath the heatmap represents 660 

methylation status: unmethylated is green (0.0% methylation), and fully methylated is red 661 

(100.0% methylated). 662 
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Figure 4. Mean levels of methylation in high-grade tumours relative to low-663 

intermediate-grade tumours and normal bladder. Top ten genes showing an increase in 664 

mean level of methylation (solid red bar) in high-grade tumours (HG, n=51) relative to low-665 

intermediate-grade tumours (LG, n=18) and in comparison to normal bladder controls (C, 666 

n=4). Each individual control or tumour sample is shown as an unfilled blue circle. Significant 667 

differences in the mean levels of methylation between the low-intermediate- and high-grade 668 

tumours, or between control and low-intermediate-grade tumours, are indicated by *, p<0.05, 669 

or **, p<0.005 (Student’s T-test). 670 

 671 

Figure 5. Association of methylation with gene transcript expression in HG-NMIBC. 672 

Tumour transcript expression in unmethylated (UM, unfilled circles) and methylated (M, filled 673 

circles) high-grade tumours, relative to normal bladder control (C, unfilled triangles) for the 674 

four genes showing significant Spearman’s correlation coefficients between promoter 675 

methylation and gene expression (PON3, STAT5a, VAX2 and ARHGEF4; p=0.0006, 676 

p=0.005, p=0.013 and p=0.0007, respectively). The double-headed arrow represents the 677 

threshold for 3-fold reduced expression relative to the mean of the normal controls (solid 678 

blue bar); expression at or below this threshold signifies reduced expression in tumour 679 

samples.  680 

 681 

 682 

  683 
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Tables 684 

 685 

 
METHYLATION 
 FREQUENCY  

MEAN LEVEL OF 
METHYLATION  

Gene 
Symbol 

High-grade Low-intermediate-
grade 

 High-grade Low-intermediate-
grade 

 

 Number   (%) Number   (%) P value (%) (%) P value 

ATP5G2 37/51  (72.5) 6/18  (33.3) 0.005 51.04 30.20 0.029 

VAX2 13/51  (25.5) 0/18  (0.0) 0.015 32.31 19.56 0.004 

IRX1 37/51  (72.5) 8/18  (44.4) 0.045 49.47 38.70 0.067 

INSRR 29/51  (56.9) 5/18  (27.8) 0.054 24.06 24.06 0.028 

IRF8 25/51  (49.0) 4/18  (22.2) 0.057 26.13 17.99 0.157 

PRDM14 45/51  (88.2) 12/18  (66.7) 0.066 60.14 46.06 0.029 

VSX1 44/51  (86.3) 12/18  (66.7) 0.086 56.37 38.26 0.0004 

TFAP2b 22/51  (43.1) 4/18  (22.2) 0.160 32.25 17.68 0.047 

PRRX1 27/51  (52.9) 7/18  (38.9) 0.413 47.03 34.36 0.041 

HIST1H4F 42/51  (82.4) 13/18  (72.2) 0.496 59.46 41.91 0.017 

 686 

Table 1. Genes showing the greatest methylation increase in high-grade relative to 687 

low-intermediate-grade NMIBC tumours. Top ten genes showing an increase in frequency 688 

of methylation (left side of table), and/or an increase in mean level of methylation (right side 689 

of table) in high-grade tumours relative to low-intermediate-grade tumours. For the left side 690 

of the table, the number and proportion of tumours methylated are displayed for the low-691 

intermediate- and high-grade cohorts, with p-value (Fishers exact, p<0.05 significant). For 692 

the right side of the table, the mean level of methylation across the low-intermediate- and 693 

high-grade tumour cohorts are displayed with p-value (Student’s T-Test, p<0.05 significant). 694 

Statistically significant p-values are displayed in bold. 695 
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Supplemental Data 696 

 697 

Figure S1. Technical validation of 450k BeadChip-array data. Correlation between array-698 

derived β-values (x-axis) and methylation percentage as determined by Pyrosequencing (y-699 

axis) for 5 CpGs (cg07778029, cg14456683, cg01227537, cg05661282 and cg26465391) 700 

across 24 samples is shown. Spearman-rank correlation coefficient r=0.912; p<0.00001. 701 

 702 

Table S1. Sample characteristics. 703 

 704 

Table S2. List of 256 differentially methylated genes. 705 

 706 

Table S3. Methylation in discovery and investigation high-grade tumour cohorts. 707 

 708 

Table S4. Frequency and mean levels of methylation in 25 genes for high- and low-709 

intermediate-grade tumours. 710 

 711 

Table S5. Gene Ontology and KEGG pathway annotation lists. 712 

 713 

Table S6. Primer sequences. 714 
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