163 research outputs found

    Tracheostomy and mechanical ventilation weaning in children affected by respiratory virus according to a weaning protocol in a pediatric intensive care unit in Argentina: an observational restrospective trial

    Get PDF
    We describe difficult weaning after prolonged mechanical ventilation in three tracheostomized children affected by respiratory virus infection. Although the spontaneous breathing trials were successful, the patients failed all extubations. Therefore a tracheostomy was performed and the weaning plan was begun. The strategy for weaning was the decrease of ventilation support combining pressure control ventilation (PCV) with increasing periods of continuous positive airway pressure + pressure support ventilation (CPAP + PSV) and then CPAP + PSV with increasing intervals of T-piece. They presented acute respiratory distress syndrome on admission with high requirements of mechanical ventilation (MV)

    Mechanisms and Functions of Spatial Protein Quality Control

    Get PDF
    A healthy proteome is essential for cell survival. Protein misfolding is linked to a rapidly expanding list of human diseases, ranging from neurodegenerative diseases to aging and cancer. Many of these diseases are characterized by the accumulation of misfolded proteins in intra- and extracellular inclusions, such as amyloid plaques. The clear link between protein misfolding and disease highlights the need to better understand the elaborate machinery that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis depends on a network of molecular chaperones and clearance pathways involved in the recognition, refolding, and/or clearance of aberrant proteins. Recent studies reveal that an integral part of the cellular management of misfolded proteins is their spatial sequestration into several defined compartments. Here, we review the properties, function, and formation of these compartments. Spatial sequestration plays a central role in protein quality control and cellular fitness and represents a critical link to the pathogenesis of protein aggregation-linked diseases

    The Interaction of the Chaperonin Tailless Complex Polypeptide 1 (Tcp1) Ring Complex (Tric) with Ribosome-Bound Nascent Chains Examined Using Photo-Cross-Linking

    Get PDF
    The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) (also called chaperonin containing TCP1 [CCT]) is a hetero-oligomeric complex that facilitates the proper folding of many cellular proteins. To better understand the manner in which TRiC interacts with newly translated polypeptides, we examined its association with nascent chains using a photo-cross-linking approach. To this end, a series of ribosome-bound nascent chains of defined lengths was prepared using truncated mRNAs. Photoactivatable probes were incorporated into these 35S- labeled nascent chains during translation. Upon photolysis, TRiC was cross-linked to ribosome-bound polypeptides exposing at least 50–90 amino acids outside the ribosomal exit channel, indicating that the chaperonin associates with much shorter nascent chains than indicated by previous studies. Cross-links were observed for nascent chains of the cytosolic proteins actin, luciferase, and enolase, but not to ribosome-bound preprolactin. The pattern of cross-links became more complex as the nascent chain increased in length. These results suggest a chain length–dependent increase in the number of TRiC subunits involved in the interaction that is consistent with the idea that the substrate participates in subunit-specific contacts with the chaperonin. Both ribosome isolation by centrifugation through sucrose cushions and immunoprecipitation with anti-puromycin antibodies demonstrated that the photoadducts form on ribosome-bound polypeptides. Our results indicate that TRiC/CCT associates with the translating polypeptide shortly after it emerges from the ribosome and suggest a close association between the chaperonin and the translational apparatus

    Distinct Proteostasis Circuits Cooperate in Nuclear and Cytoplasmic Protein Quality Control

    Get PDF
    Protein misfolding is linked to a wide array of human disorders, including Alzheimer’s disease, Parkinson’s disease and type II diabetes1,2. Protective cellular protein quality control (PQC) mechanisms have evolved to selectively recognize misfolded proteins and limit their toxic effects3,4,5,6,7,8,9, thus contributing to the maintenance of the proteome (proteostasis). Here we examine how molecular chaperones and the ubiquitin–proteasome system cooperate to recognize and promote the clearance of soluble misfolded proteins. Using a panel of PQC substrates with distinct characteristics and localizations, we define distinct chaperone and ubiquitination circuitries that execute quality control in the cytoplasm and nucleus. In the cytoplasm, proteasomal degradation of misfolded proteins requires tagging with mixed lysine 48 (K48)- and lysine 11 (K11)-linked ubiquitin chains. A distinct combination of E3 ubiquitin ligases and specific chaperones is required to achieve each type of linkage-specific ubiquitination. In the nucleus, however, proteasomal degradation of misfolded proteins requires only K48-linked ubiquitin chains, and is thus independent of K11-specific ligases and chaperones. The distinct ubiquitin codes for nuclear and cytoplasmic PQC appear to be linked to the function of the ubiquilin protein Dsk2, which is specifically required to clear nuclear misfolded proteins. Our work defines the principles of cytoplasmic and nuclear PQC as distinct, involving combinatorial recognition by defined sets of cooperating chaperones and E3 ligases. A better understanding of how these organelle-specific PQC requirements implement proteome integrity has implications for our understanding of diseases linked to impaired protein clearance and proteostasis dysfunction

    Diverse Cellular Functions of the Hsp90 Molecular Chaperone Uncovered Using Systems Approaches

    Get PDF
    SummaryA comprehensive understanding of the cellular functions of the Hsp90 molecular chaperone has remained elusive. Although Hsp90 is essential, highly abundant under normal conditions, and further induced by environmental stress, only a limited number of Hsp90 “clients” have been identified. To define Hsp90 function, a panel of genome-wide chemical-genetic screens in Saccharomyces cerevisiae were combined with bioinformatic analyses. This approach identified several unanticipated functions of Hsp90 under normal conditions and in response to stress. Under normal growth conditions, Hsp90 plays a major role in various aspects of the secretory pathway and cellular transport; during environmental stress, Hsp90 is required for the cell cycle, meiosis, and cytokinesis. Importantly, biochemical and cell biological analyses validated several of these Hsp90-dependent functions, highlighting the potential of our integrated global approach to uncover chaperone functions in the cell

    Proteostatic Control of Telomerase Function through TRiC-Mediated Folding of TCAB1

    Get PDF
    SummaryTelomere maintenance by telomerase is impaired in the stem cell disease dyskeratosis congenita and during human aging. Telomerase depends upon a complex pathway for enzyme assembly, localization in Cajal bodies, and association with telomeres. Here, we identify the chaperonin CCT/TRiC as a critical regulator of telomerase trafficking using a high-content genome-wide siRNA screen in human cells for factors required for Cajal body localization. We find that TRiC is required for folding the telomerase cofactor TCAB1, which controls trafficking of telomerase and small Cajal body RNAs (scaRNAs). Depletion of TRiC causes loss of TCAB1 protein, mislocalization of telomerase and scaRNAs to nucleoli, and failure of telomere elongation. DC patient-derived mutations in TCAB1 impair folding by TRiC, disrupting telomerase function and leading to severe disease. Our findings establish a critical role for TRiC-mediated protein folding in the telomerase pathway and link proteostasis, telomere maintenance, and human disease

    Protein misfolding in neurodegenerative diseases : implications and strategies

    Get PDF
    A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.Peer reviewe

    Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes

    Get PDF
    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought
    corecore