242 research outputs found

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Observers and Locality in Everett Quantum Field Theory

    Full text link
    A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory [M. A. Rubin, Found. Phys. 32, 1495-1523 (2002)]. Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results of measurements, using a type of sudden approximation and in the limit of massive systems in narrow-wavepacket states. Detection of the presence of a spin-1/2 system in a given spin state by a freely-moving two-state observer illustrates the features of the model and the nonperturbative computational methodology. With the help of perturbation theory the model is applied to a calculation of the quintessential "nonlocal" quantum phenomenon, spin correlations in the Einstein-Podolsky-Rosen-Bohm experiment.Comment: Some changes to introduction and discussion sections, typos corrected, conclusions unchanged. To appear in Foundations of Physic

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

    Get PDF
    We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly aμ(gμ2)/2a_\mu \equiv (g_\mu-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa\omega_a between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω~p{\tilde{\omega}'^{}_p} in a spherical water sample at 34.7^{\circ}C. The ratio ωa/ω~p\omega_a / {\tilde{\omega}'^{}_p}, together with known fundamental constants, determines aμ(FNAL)=116592040(54)×1011a_\mu({\rm FNAL}) = 116\,592\,040(54)\times 10^{-11} (0.46\,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ+\mu^+ and μ\mu^-, the new experimental average of aμ(Exp)=116592061(41)×1011a_\mu({\rm Exp}) = 116\,592\,061(41)\times 10^{-11} (0.35\,ppm) increases the tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure

    The Physics of the B Factories

    Get PDF
    corecore