396 research outputs found

    Somatic PIK3R1 Variation as a Cause of Vascular Malformations and Overgrowth

    Get PDF
    PurposeSomatic activating variants in the PI3K-AKT pathway cause vascular malformations with and without overgrowth. We previously reported an individual with capillary and lymphatic malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1.MethodsAffected tissue from individuals with vascular lesions and overgrowth recruited from a multisite collaborative network was studied. Next-generation sequencing targeting coding regions of cell-signaling and cancer-associated genes was performed followed by assessment of variant pathogenicity.ResultsThe phenotypic and variant spectrum associated with somatic variation in PIK3R1 is reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related overgrowth spectrum (PROS). These overlapping features included mixed vascular malformations, sandal toe gap deformity with macrodactyly, lymphatic malformations, venous ectasias, and overgrowth of soft tissue or bone.ConclusionSomatic PIK3R1 variants sharing attributes with cancer-associated variants cause complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum attributable to genetic variation in the PI3K-AKT pathway

    A systematic molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their biological activity.

    Get PDF
    Background AKT, a critical effector of the phosphoinositide 3-kinase (PI3K) signalling cascade, is an intensely pursued therapeutic target in oncology. Two distinct classes of AKT inhibitors have been in clinical development, ATP-competitive and allosteric. Class-specific differences in drug activity are likely the result of differential structural and conformational requirements governing efficient target binding, which ultimately determine isoform-specific potency, selectivity profiles and activity against clinically relevant AKT mutant variants.Methods We have carried out a systematic evaluation of clinical AKT inhibitors using in vitro pharmacology, molecular profiling and biochemical assays together with structural modelling to better understand the context of drug-specific and drug-class-specific cell-killing activity.Results Our data demonstrate clear differences between ATP-competitive and allosteric AKT inhibitors, including differential effects on non-catalytic activity as measured by a novel functional readout. Surprisingly, we found that some mutations can cause drug resistance in an isoform-selective manner despite high structural conservation across AKT isoforms. Finally, we have derived drug-class-specific phosphoproteomic signatures and used them to identify effective drug combinations.Conclusions These findings illustrate the utility of individual AKT inhibitors, both as drugs and as chemical probes, and the benefit of AKT inhibitor pharmacological diversity in providing a repertoire of context-specific therapeutic options

    Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.

    Get PDF
    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer

    Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus

    Get PDF
    The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection

    Insulin signalling and the regulation of glucose and lipid metabolism

    Full text link
    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62568/1/414799a.pd

    PI3Kδ and primary immunodeficiencies.

    Get PDF
    Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy

    Mutation of the PIK3CA oncogene in human cancers

    Get PDF
    It is now well established that cancer is a genetic disease and that somatic mutations of oncogenes and tumour suppressor genes are the initiators of the carcinogenic process. The phosphatidylinositol 3-kinase signalling pathway has previously been implicated in tumorigenesis, and evidence over the past year suggests a pivotal role for the phosphatidylinositol 3-kinase catalytic subunit, PIK3CA, in human cancers. In this review, we analyse recent reports describing PIK3CA mutations in a variety of human malignancies, and discuss their possible implications for diagnosis and therapy

    Immunohistochemical analysis of the mechanistic target of rapamycin and hypoxia signalling pathways in basal cell carcinoma and trichoepithelioma

    Get PDF
    Background: Basal cell carcinoma (BCC) is the most common cancer in Caucasians. Trichoepithelioma (TE) is a benign neoplasm that strongly resembles BCC. Both are hair follicle (HF) tumours. HFs are hypoxic microenvironments, therefore we hypothesized that hypoxia-induced signalling pathways could be involved in BCC and TE as they are in other human malignancies. Hypoxia-inducible factor 1 (HIF1) and mechanistic/mammalian target of rapamycin (mTOR) are key players in these pathways. Objectives: To determine whether HIF1/mTOR signalling is involved in BCC and TE. Methods: We used immunohistochemical staining of formalin-fixed paraffin-embedded BCC (n = 45) and TE (n = 35) samples to assess activity of HIF1, mTORC1 and their most important target genes. The percentage positive tumour cells was assessed manually in a semi-quantitative manner and categorized (0%, 80%). Results: Among 45 BCC and 35 TE examined, expression levels were respectively 81% and 57% (BNIP3), 73% and 75% (CAIX), 79% and 86% (GLUT1), 50% and 19% (HIF1 alpha), 89% and 88% (pAKT), 55% and 61% (pS6), 15% and 25% (pMTOR), 44% and 63% (PHD2) and 44% and 49% (VEGF-A). CAIX, Glut1 and PHD2 expression levels were significantly higher in TE when only samples with at least 80% expression were included. Conclusions: HIF and mTORC1 signalling seems active in both BCC and TE. There are no appreciable differences between the two with respect to pathway activity. At this moment immunohistochemical analyses of HIF, mTORC1 and their target genes does not provide a reliable diagnostic tool for the discrimination of BCC and TE

    The analysis of PIK3CA mutations in gastric carcinoma and metanalysis of literature suggest that exon-selectivity is a signature of cancer type

    Get PDF
    BACKGROUND: PIK3CA is one of the genes most frequently mutated in human cancers and it is a potential target for personalized therapy. The aim of this study was to assess the frequency and type of PIK3CA mutations in gastric carcinoma and compare them with their clinical pathological correlates. METHODS: We analysed 264 gastric cancers, including 39 with microsatellite instability (MSI), for mutations in the two PIK3CA hotspots in exons 9 and 20 by direct sequencing of DNA obtained from microdissected cancer cells. RESULTS: The cases harbouring mutations were 42 (16%). All were heterozygous missense single base substitutions; the most common was H1047R (26/42; 62%) in exon 20 and the second was Q546K (4/42; 9.5%) in exon 9. All the mutated MSI cases (8/39) carried the H1047R mutation. No other association between PI3KCA mutations and clinical pathological covariates was found. A metanalysis of the mutations occurring in the same regions in 27 publications showed that ratio between exon 20 and exon 9 prevalences was 0.6 (95% CI: 0.5 -0.8) for colon, 1.6 (95% CI: 1.1 -2.3) for breast, 2.7 (95% CI: 1.6 -4.9) for gastric and 4.1 (95% CI: 1.9 -10.3) for endometrial cancer. CONCLUSIONS: The overall prevalence of PIK3CA mutations implies an important role for PIK3CA in gastric cancer. The lack of association with any clinical-pathological condition suggests that mutations in PIK3CA occur early in the development of cancer. The metanalysis showed that exon-selectivity is an important signature of cancer type reflecting different contexts in which tumours arise
    • …
    corecore