765 research outputs found

    Progenitors of Long Gamma-ray Bursts

    Full text link
    Pinpointing the progenitors of long duration gamma-ray bursts (LGRBs) remains an extremely important question, although it is now clear that at least a fraction of LGRBs originate in the core collapse of massive stars in type Ic supernovae, the pathways to the production of these stars, and their initial masses, remain uncertain. Rotation is thought to be vital in the creation of LGRBs, and it is likely that black hole creation is also necessary. We suggest that these two constraints can be met if the GRB progenitors are very massive stars (>20 solar masses) and are formed in tight binary systems. Using simple models we compare the predictions of this scenario with observations and find that the location of GRBs on their host galaxies are suggestive of main-sequence masses in excess of 20 solar masses, while 50% of the known compact binary systems may have been sufficiently close to have had the necessary rotation rates for GRB creation. Thus, massive stars in compact binaries are a likely channel for at least some fraction of LGRBs.Comment: To appear in "Gamma-ray bursts: Prospects for GLAST", AIP Conference proceedings 906, Editors M. Axelsson and F Ryd

    The Environments of the Most Energetic Gamma-Ray Bursts

    Get PDF
    We analyze the properties of a sample of long gamma-ray bursts (LGRBs) detected by the Fermi satellite that have a spectroscopic redshift and good follow-up coverage at both X-ray and optical/nIR wavelengths. The evolution of LGRB afterglows depends on the density profile of the external medium, enabling us to separate wind or ISM-like environments based on the observations. We do this by identifying the environment that provides the best agreement between estimates of pp, the index of the underlying power-law distribution of electron energies, as determined by the behavior of the afterglow in different spectral/temporal regimes. At 11 rest-frame hours after trigger, we find a roughly even split between ISM-like and wind-like environments. We further find a 2σ\sigma separation in the prompt emission energy distributions of wind-like and ISM-like bursts. We investigate the underlying physical parameters of the shock, and calculate the (degenerate) product of density and magnetic field energy (Ï”B\epsilon_B). We show that Ï”B\epsilon_B must be â‰Ș10−2\ll 10^{-2} to avoid implied densities comparable to the intergalactic medium. Finally, we find that the most precisely constrained observations disagree on pp by more than would be expected based on observational errors alone. This suggests additional sources of error that are not incorporated in the standard afterglow theory. For the first time, we provide a measurement of this intrinsic error which can be represented as an error in the estimate of pp of magnitude 0.25±0.040.25 \pm 0.04. When this error is included in the fits, the number of LGRBs with an identified environment drops substantially, but the equal division between the two types remains.Comment: 31 pages (+14 appendix), 9 figures, 6 tables. Accepted for publication in Ap

    Galactic Extinction from Colors and Counts of Field Galaxies in WFPC2 Frames: An Application to GRB 970228

    Full text link
    We develop the ``simulated extinction method'' to measure average foreground Galactic extinction from field galaxy number-counts and colors. The method comprises simulating extinction in suitable reference fields by changing the isophotal detection limit. This procedure takes into account selection effects, in particular, the change in isophotal detection limit (and hence in isophotal magnitude completeness limit) with extinction, and the galaxy color--magnitude relation. We present a first application of the method to the HST WFPC2 images of the gamma-ray burster GRB 970228. Four different WFPC2 high-latitude fields, including the HDF, are used as reference to measure the average extinction towards the GRB in the F606W passband. From the counts, we derive an average extinction of A_V = 0.5 mag, but the dispersion of 0.4 mag between the estimates from the different reference fields is significantly larger than can be accounted by Poisson plus clustering uncertainties. Although the counts differ, the average colors of the field galaxies agree well. The extinction implied by the average color difference between the GRB field and the reference galaxies is A_V = 0.6 mag, with a dispersion in the estimated extinction from the four reference fields of only 0.1 mag. All our estimates are in good agreement with the value of 0.81\pm0.27 mag obtained by Burstein & Heiles, and with the extinction of 0.78\pm0.12 measured by Schlegel et al. from maps of dust IR emission. However, the discrepancy between the widely varying counts and the very stable colors in these high-latitude fields is worth investigating.Comment: 14 pages, 2 figures; submitted to the Astrophysical Journa

    Evidence for Cosmic Acceleration is Robust to Observed Correlations Between Type Ia Supernova Luminosity and Stellar Age

    Full text link
    Type Ia Supernovae (SNe Ia) are powerful standardizable candles for constraining cosmological models and provided the first evidence of the accelerated expansion of the universe. Their precision derives from empirical correlations, now measured from >1000>1000 SNe Ia, between their luminosities, light-curve shapes, colors and most recently with the stellar mass of their host galaxy. As mass correlates with other galaxy properties, alternative parameters have been investigated to improve SN Ia standardization though none have been shown to significantly alter the determination of cosmological parameters. We re-examine a recent claim, based on 34 SN Ia in nearby passive host galaxies, of a 0.05 mag/Gyr dependence of standardized SN Ia luminosity on host age which if extrapolated to higher redshifts, would be a bias up to 0.25 mag, challenging the inference of dark energy. We reanalyze this sample of hosts using both the original method and a Bayesian hierarchical model and find after a fuller accounting of the uncertainties the significance of a dependence on age to be ≀2σ\leq2\sigma and ∌1σ\sim1\sigma after the removal of a single poorly-sampled SN Ia. To test the claim that a trend seen in old stellar populations can be applied to younger ages, we extend our analysis to a larger sample which includes young hosts. We find the residual dependence of host age (after all standardization typically employed for cosmological measurements) to be consistent with zero for 254 SNe Ia from the Pantheon sample, ruling out the large but low significance trend seen in passive hosts.Comment: 9 pages, 3 figures, 3 tables. Accepted for publication in ApJ

    Proper-Motion Measurements with the VLA. II. Observations of Twenty-eight Pulsars

    Full text link
    Using the Very Large Array, we have measured the proper motions of twenty-eight radio pulsars. On average, the pulsars studied are fainter and more distant than those studied in earlier work, reducing the selection biases inherent in surveys restricted to the Solar neighborhood. The typical measurement precision achieved is a few milliarcseconds per year, corresponding to a few tens of kilometers per second for a pulsar a kiloparsec away. While our results compare well with higher-precision measurements done using very-long baseline interferometry, we find that several earlier proper motion surveys appear to have reported overly optimistic measurement uncertainties, most likely because of a failure to fully account for ionospheric effects. We discuss difficulties inherent in estimating pulsar velocities from proper motions given poorly constrained pulsar distances. Our observations favor a distribution with 20% of pulsars in a low velocity component (sigma_1D = 99 km/s) and 80% in a high velocity component (sigma_1D = 294 km/s). Furthermore, our sample is consistent with a scale height of pulsar birthplaces comparable to the scale height of the massive stars that are their presumed progenitors. No evidence is found in our data for a significant population of young pulsars born far from the plane. We find that estimates of pulsar ages based on kinematics agree well with the canonical spin-down age estimate, but agreement is improved if braking indexes are drawn from a Gaussian distribution centered at n=3 with width 0.8.Comment: 20 pages. Accepted for publication in the Astronomical Journa

    HST-NICMOS Observations of Terzan 5: Stellar Content and Structure of the Core

    Get PDF
    We report results from HST-NICMOS imaging of the extremely dense core of the globular cluster Terzan 5. This highly obscured bulge cluster has been estimated to have one of the highest collision rates of any galactic globular cluster, making its core a particularly conducive environment for the production of interacting binary systems. We have reconstructed high-resolution images of the central 19"x19" region of Terzan 5 by application of the drizzle algorithm to dithered NIC2 images in the F110W, F187W, and F187N near-infrared filters. We have used a DAOPHOT/ALLSTAR analysis of these images to produce the deepest color-magnitude diagram (CMD) yet obtained for the core of Terzan 5. We have also analyzed the parallel 11"X11" NIC1 field, centered 30" from the cluster center and imaged in F110W and F160W, and an additional NIC2 field that is immediately adjacent to the central field. This imaging results in a clean detection of the red-giant branch and horizontal branch in the central NIC2 field, and the detection of these plus the main-sequence turnoff and the upper main sequence in the NIC1 field. We have constructed an H versus J-H CMD for the NIC1 field. We obtain a new distance estimate of 8.7 kpc, which places Terzan 5 within less than 1 kpc of the galactic center. We have also determined a central surface-density profile which results in a maximum likelihood estimate of 7.9" +/- 0.6" for the cluster core radius. We discuss the implications of these results for the dynamical state of Terzan 5.Comment: 17 pages, 9 figures, accepted for publication in ApJ, for May 20, 200

    Black Widow Pulsars: the Price of Promiscuity

    Full text link
    The incidence of evaporating 'black widow' pulsars (BWPs) among all millisecond pulsars (MSPs) is far higher in globular clusters than in the field. This implies a special formation mechanism for them in clusters. Cluster MSPs in wide binaries with WD companions exchange them for turnoff-mass stars. These new companions eventually overflow their Roche lobes because of encounters and tides. The millisecond pulsars eject the overflowing gas from the binary, giving mass loss on the binary evolution timescale. The systems are only observable as BWPs at epochs where this evolution is slow, making the mass loss transparent and the lifetime long. This explains why observed BWPs have low-mass companions. We suggest that at least some field BWPs were ejected from globular clusters or entered the field population when the cluster itself was disrupted.Comment: 6 pages, 2 figures, MNRAS in pres

    On the nature of X-Ray Flashes in the SWIFT era

    Get PDF
    X-Ray Flashes (XRFs) are soft gamma-ray bursts whose nature is not clear. Their soft spectrum can be due to cosmological effects (high redshift), an off-axis view of the jet or can be intrinsic to the source. We use SWIFT observations to investigate different scenarios proposed to explain their origin. We have made a systematic analysis of the afterglows of XRFs with known redshift observed by SWIFT. We derive their redshift and luminosity distributions, and compare their properties with a sample of normal GRBs observed by the same instrument. The high distance hypothesis is ruled out by the redshift distribution of our sample of XRFs, indicating that, at least for our sample, the off-axis and sub-energetic hypotheses are preferred. Of course, this does not exclude that some XRFs without known redshift could be at high distance. However we find that taking into account the sensitivity of the BAT instrument, XRFs cannot be detected by SWIFT beyond ~ 3. The luminosity distribution of XRF afterglows is similar to the GRB one. This would rule out most off-axis models, but for the homogeneous jet model. However this model predicts a GRB rate uncomfortably near the observed rate of supernovae. This implies that XRFs, at least those of our sample, are intrinsically soft.Comment: 4 pages, 2 color figures. Astronomy and Astrophysics Letters, accepte

    Late-epoch optical and near-infrared observations of the GRB000911 afterglow and its host galaxy

    Get PDF
    We present the results of an optical and near-infrared (NIR) monitoring campaign of the counterpart of Gamma-Ray Burst (GRB) 000911, located at redshift z=1.06, from 5 days to more than 13 months after explosion. Our extensive dataset is a factor of 2 larger and spans a time interval about 4 times longer than the ones considered previously for this GRB afterglow; this allows a more thorough analysis of its light curve and of the GRB host galaxy properties. The afterglow light curves show a single power-law temporal decline, modified at late times by light from a host galaxy with moderate intrinsic extinction, and possibly by an emerging supernova (SN). The afterglow evolution is interpreted within the classical "fireball" scenario as a weakly collimated adiabatic shock propagating in the interstellar medium. The presence of a SN light curve superimposed on the non-thermal afterglow emission is investigated: while in the optical bands no significant contribution to the total light is found from a SN, the NIR J-band data show an excess which is consistent with a SN as bright as the known hypernova SN1998bw. If the SN interpretation is true, this would be the farthest GRB-associated SN, as well as the farthest core-collapse SN, discovered to date. However, other possible explanations of this NIR excess are also investigated. Finally, we studied the photometric properties of the host, and found that it is likely to be a slightly reddened, subluminous, extreme starburst compact galaxy, with luminosity about 0.1 L*, an age of about 0.5 Gyr and a specific Star Formation Rate (SFR) of approximately 30 Msol yr-1 (L/L*)-1. This is the highest specific SFR value for a GRB host inferred from optical/NIR data.Comment: 13 pages, 6 figures, 3 tables. Accepted for publication in A&A, main journa

    Gamma-ray bursts and terrestrial planetary atmospheres

    Full text link
    We describe results of modeling the effects on Earth-like planets of long-duration gamma-ray bursts (GRBs) within a few kiloparsecs. A primary effect is generation of nitrogen oxide compounds which deplete ozone. Ozone depletion leads to an increase in solar UVB radiation at the surface, enhancing DNA damage, particularly in marine microorganisms such as phytoplankton. In addition, we expect increased atmospheric opacity due to buildup of nitrogen dioxide produced by the burst and enhanced precipitation of nitric acid. We review here previous work on this subject and discuss recent developments, including further discussion of our estimates of the rates of impacting GRBs and the possible role of short-duration bursts.Comment: 12 pages including 5 figures (4 in color). Added discussion of GRB rates and biological effects. Accepted for publication in New Journal of Physics, for special issue "Focus on Gamma-Ray Bursts
    • 

    corecore