136 research outputs found

    Human-Like Neutralizing Antibodies Protect Mice from Aerosol Exposure with Western Equine Encephalitis Virus

    Get PDF
    Western equine encephalitis virus (WEEV) causes symptoms in humans ranging from mild febrile illness to life-threatening encephalitis, and no human medical countermeasures are licensed. A previous study demonstrated that immune serum from vaccinated mice protected against lethal WEEV infection, suggesting the utility of antibodies for pre- and post-exposure treatment. Here, three neutralizing and one binding human-like monoclonal antibodies were evaluated against WEEV aerosol challenge. Dose-dependent protection was observed with two antibodies administered individually, ToR69-3A2 and ToR68-2C3. In vitro neutralization was not a critical factor for protection in this murine model, as ToR69-3A2 is a strong neutralizing antibody, and ToR68-2C3 is a non-neutralizing antibody. This result highlights the importance of both neutralizing and non-neutralizing antibodies in the protection of mice from WEEV lethality

    Detection of biomarkers for filoviral infection with a silicon photonic resonator platform

    Get PDF
    This protocol describes the use of silicon photonic microring resonator sensors for detection of Ebola virus (EBOV) and Sudan virus (SUDV) soluble glycoprotein (sGP). This protocol encompasses biosensor functionalization of silicon microring resonator chips, detection of protein biomarkers in sera, preparing calibration standards for analytical validation, and quantification of the results from these experiments. This protocol is readily adaptable toward other analytes, including cytokines, chemokines, nucleic acids, and viruses. For complete details on the use and execution of this protocol, please refer to Qavi et al. (2022)

    A flexible, quantitative plasmonic-fluor lateral flow assay for the rapid detection of Orthoebolavirus zairense and Orthoebolavirus sudanense

    Get PDF
    Filoviruses comprise a family of single-stranded, negative-sense RNA viruses with a significant impact on human health. Given the risk for disease outbreaks, as highlighted by the recent outbreaks across Africa, there is an unmet need for flexible diagnostic technologies that can be deployed in resource-limited settings. Herein, we highlight the use of plasmonic-fluor lateral flow assays (PF-LFA) for the rapid, quantitative detection of an Ebolavirus-secreted glycoprotein, a marker for infection. Plasmonic fluors are a class of ultrabright reporter molecules that combine engineered nanorods with conventional fluorophores, resulting in improved analytical sensitivity. We have developed a PF-LFA fo

    Stokes drift

    Get PDF
    During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc.8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections.This article is part of the theme issue 'Nonlinear water waves'

    Jean-Baptiste Bélanger, hydraulic engineer, researcher and academic

    Get PDF
    Jean-Baptiste BÉLANGER (1790-1874) worked as a hydraulic engineer at the beginning of his career. He developed the backwater equation to calculate gradually-varied open channel flow properties for steady flow conditions. Later, as an academic at the leading French engineering schools (Ecole Centrale des Arts et Manufactures, Ecole des Ponts et Chaussées, and Ecole Polytechnique), he developed a new university curriculum in mechanics and several textbooks including a seminal text in hydraulic engineering. His influence on his contemporaries was considerable, and his name is written on the border of one of the four facades of the Eiffel Tower. BÉLANGER's leading role demonstrated the dynamism of practicing engineers at the time, and his contributions paved the way to many significant works in hydraulics

    Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons

    Full text link
    Continental crust forms from, and thus chemically depletes, the Earth's mantle. Evidence that the Earth's mantle was already chemically depleted by melting before the formation of today's oldest surviving crust has been presented in the form of Sm-Nd isotope studies of 3.8-4.0 billion years old rocks from Greenland(1-5) and Canada(5-7). But this interpretation has been questioned because of the possibility that subsequent perturbations may have re-equilibrated the neodymium-isotope compositions of these rocks(8). Independent and more robust evidence for the origin of the earliest crust and depletion of the Archaean mantle can potentially be provided by hafnium-isotope compositions of zircon, a mineral whose age can be precisely determined by U-Pb dating, and which can survive metamorphisms(4). But the amounts of hafnium in single zircon grains are too small for the isotopic composition to be precisely analysed by conventional methods. Here we report hafnium-isotope data, obtained using the new technique of multiple-collector plasma-source mass spectrometry(9), for 37 individual grains of the oldest known terrestrial zircons (from the Narryer Gneiss Complex, Australia, with U-Pb ages of up to 4.14 Gyr (refs 10-13)). We find that none of the grains has a depleted mantle signature, but that many were derived from a source with a hafnium-isotope composition similar to that of chondritic meteorites. Furthermore, more than half of the analysed grains seem to have formed by remelting of significantly older crust, indicating that crustal preservation and subsequent reworking might have been important processes from earliest times.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62681/1/399252a0.pd

    Antibodies Against Anthrax: Mechanisms of Action and Clinical Applications

    Get PDF
    B. anthracis is a bioweapon of primary importance and its pathogenicity depends on its lethal and edema toxins, which belong to the A-B model of bacterial toxins, and on its capsule. These toxins are secreted early in the course of the anthrax disease and for this reason antibiotics must be administered early, in addition to other limitations. Antibodies (Abs) may however neutralize those toxins and target this capsule to improve anthrax treatment, and many Abs have been developed in that perspective. These Abs act at various steps of the cell intoxication and their mechanisms of action are detailed in the present review, presented in correlation with structural and functional data. The potential for clinical application is discussed for Abs targeting each step of entry, with four of these molecules already advancing to clinical trials. Paradoxically, certain Abs may also enhance the lethal toxin activity and this aspect will also be presented. The unique paradigm of Abs neutralizing anthrax toxins thus exemplifies how they may act to neutralize A-B toxins and, more generally, be active against infectious diseases
    • …
    corecore