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ABSTRACT: Filoviruses comprise a family of single-stranded,
negative-sense RNA viruses with a significant impact on human
health. Given the risk for disease outbreaks, as highlighted by the
recent outbreaks across Africa, there is an unmet need for flexible
diagnostic technologies that can be deployed in resource-limited
settings. Herein, we highlight the use of plasmonic-fluor lateral
flow assays (PF-LFA) for the rapid, quantitative detection of an
Ebolavirus-secreted glycoprotein, a marker for infection. Plasmonic
fluors are a class of ultrabright reporter molecules that combine
engineered nanorods with conventional fluorophores, resulting in
improved analytical sensitivity. We have developed a PF-LFA for Orthoebolavirus zairense (EBOV) and Orthoebolavirus sudanense
(SUDV) that provides estimated limits of detection as low as 0.446 and 0.641 ng/mL, respectively. Furthermore, our assay highlights
a high degree of specificity between the two viral species while also maintaining a turnaround time as short as 30 min. To highlight
the utility of our PF-LFA, we demonstrate the detection of EBOV infection in non-human primates. Our PF-LFA represents an
enormous step forward in the development of a robust, field-deployable assay for filoviruses.
KEYWORDS: Filoviruses, diagnostics, plasmonics, lateral flow assay

Ebolavirus disease (EVD) is caused by members within the
Filoviridae family, Orthoebolavirus genus, of which four

species have been documented to cause disease within
humans: Orthoebolavirus zairense (EBOV), Orthoebolavirus
sudanense (SUDV), Orthoebolavirus bundibugyoense (BDBV),
and Orthoebolavirus taiense (TAFV).1 O. zairense, initially
discovered in 1976, accounts for the greatest number of
outbreaks and for the largest outbreak to date in the
Democratic Republic of the Congo (DRC) in 2014, with
over 28,000 individuals infected and over 11,000 dead.2

Consequently, efforts to mitigate outbreaks and advances in
treatment have been primarily focused on O. zairense. As
highlighted by the recent SUDV outbreak in Uganda, there is
still a critical need for the development of new treatments and
diagnostics for filoviruses other than EBOV.3−6

Current diagnostic paradigms for filoviruses rely on reverse
transcriptase polymerase chain reaction (RT-PCR) and
antigen-based detection techniques.3,4 While conventional
RT-PCR is the gold standard for diagnosis, there are several
constraints that limit its utility in field settings. Among these
are the needs for consistent power supplies, trained laboratory
technicians, and cold chain custody of reagents. Consequently,
traditional RT-PCR techniques are often constrained to core
laboratories. In contrast, antigen-based detection techniques
are often integrated with lateral flow assays (LFAs). While

these offer portability and ease of use, they are often binary in
their readout, providing a positive or negative answer rather
than a quantitative value. Moreover, they are typically quite
insensitive, and currently available LFAs for filoviruses usually
focus on the detection of viral protein 40 (VP40), nucleo-
protein (NP), or glycoprotein (GP).4 These antigen-based
markers are typically positive after RT-PCR,7 thereby limiting
their diagnostic window and efficacy for screening purposes.
Herein, we describe the development of a LFA against

EBOV and SUDV, leveraging plasmonic fluors (PFs), a class of
ultrabright fluorescent labels. PFs are engineered gold and
silver nanorods with conjugated fluorophores. The resulting
fluor is brighter than conventional fluorophores, consequen-
tially leading to reduced volume requirements, improved
signal-to-noise, and improved analytical sensitivity. These
probes have been detected previously in both plate-based
array formats as well as LFAs for the detection of a variety of
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analytes.8−11 In addition to the unique readout of this assay, we
make use of unique antibodies against the soluble glycoprotein
(sGP) of SUDV and EBOV. Previous studies have suggested
that sGP serves as a diagnostic and prognostics marker for
Orthoebolavirus infection.12 ,13 Together, our PF-LFA along
with the informative biomarkers for filoviral infection result in
a highly sensitive assay with potential for use during filoviral
outbreaks.
A schematic of the LFA developed in our study is

highlighted in Figure 1. The PF-LFA consists of a sample
pad, followed by a nitrocellulose membrane with capture

antibodies printed on it and an absorption pad. Antibodies
against SUDV sGP, EBOV sGP, and goat IgG (control) are
arrayed sequentially. The sample of interest is either incubated
in a solution containing pan-filoviral antibodies conjugated to
PFs, after which the sample is added to the assay (Figure 1a),
or directly applied to a PF-LFA containing the aforementioned
antibody−PF conjugates (Figure 1b). Capillary action pulls the
specimen across the LFA, in addition to specific filoviral
antibodies conjugated to PFs as well as control antibodies. The
specimen mixture is finally deposited into the absorption pad
at the end of the LFA, and then the assay is read-out using a

Figure 1. Schematic of the plasmonic-fluor lateral flow assay (PF-LFA) 2-plex assay for the detection of EBOV and SUDV. The PF-LFA can
be operated (a) with a pre-incubation step or (b) by directly adding the sample of interest to a test strip. (a) The sample of interest is pre-incubated
with a solution containing plasmonic fluors conjugated with pan-filoviral antibodies for 15 min. Subsequently, this mixture is added to the LFA via
the sample pad. Capillary action moves the solution across the strip, toward the absorbent pad. The sample passes across stripes of antibodies
against EBOV sGP, SUDV sGP, and a control, after which the signal is read via a fluorescent reader. (b) Alternatively, as shown in the schematic
below, a conjugate pad containing the PF conjugates can be integrated into the device to eliminate pre-incubation.

Figure 2. Increased pre-incubation time results in improved assay performance. For both (a) EBOV sGP and (b) SUDV sGP, increased pre-
incubation time of the sample specimen with the pan-filoviral secondary antibodies conjugated to PFs resulted in an improvement of assay
sensitivity, as well as an improvement in dynamic range. Each data point is n = 1.
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fluorescent reader developed in-house by Auragent Bio-
science.9 The total dimensions of a single strip are 3 mm ×
60 mm.
To verify selectivity of the antibodies employed in our assay

with the LFAs, we ran experiments with the detection of a
single sGP target, either EBOV and SUDV, and examined the
cross-reactivity with the off-target antibody at various
concentrations of EBOV sGP and SUDV sGP and various
incubation times. Figure S1-Sn highlights the responses for the
on-target, off-target, and control at varying concentrations and
incubation times. For both EBOV and SUDV capture
antibodies, there is minimal cross-reactivity over the
concentration ranges and pre-incubation times. These results
are consistent with previous work with these antibody pairs.12

We also observed that running samples at a total concentration
of 10% serum produced the most robust and sensitive results,
as increasing the percentage serum decreased the analytical
performance of the assay (Figure S2-Sn). For the pre-
incubation model of our assay, we also observed that increasing
the pre-incubation time improved both the estimated lower
limit of detection and the working range of our assay (Figure
2).
Using spike-in studies in pooled human serum, we were able

to quantify the analytical sensitivity and lower limit of
detection of the PF-LFAs for both EBOV sGP and SUDV
sGP (Figure 3a). With a pre-incubation time of 15 min with
the sample and pan-filoviral antibodies, followed by a 15 min
run-time for the LFA, the total assay time was 30 min. The
estimated limits of detection for EBOV sGP and SUDV sGP
were 0.446 and 0.641 ng/mL, respectively. When the sample
was directly applied to the test strips (no pre-incubation
period), our estimated limit of detection increased to 2.15 and
1.07 ng/mL for EBOV sGP and SUDV sGP, respectively
(Figure S3-Sn). We observed that, at higher concentrations of
the target, with both pre-incubation and direct sample
application, a hook effect was present. In LFAs, this is
commonly observed due to excess antigen, often leading to a
paradoxical decrease in signal response.14

To validate the performance of our PF-LFA, we ran serum
samples from EBOV-infected non-human primates (NHPs).
Each sample was run identically to the calibration curves in
Figure 3a�that is, a 15 min pre-incubation period followed by

running the sample on the PF-LFA. Additionally, these are the
same samples run in previous literature reports with a photonic
resonator platform.12 While RT-PCR correctly identified
infection in 22/30 samples (73.3%), the PF-LFA detected
infection in 30/30 (100%) of the samples (Figure 3b).
Existing filoviral diagnostics typically rely on either nucleic

acid amplification testing (NAAT) or antigen-based testing.
There are several real-time, RT-PCR-based assays available on
the market for EBOV, including those developed by govern-
ment organizations (e.g., the DoD and CDC) and private
companies (Cepheid, Altona Diagnostics GmbH, BioFire
Defense). The majority of these assays focus on EBOV
genes, namely, GP, L, NP, and VP40, although there are
several RT-PCR assays that do specifically target filoviruses
other than EBOV. While NAAT offers high analytical
sensitivity, the needs for sample extraction (which comes
with increased risk for unintentional exposure to specimens),
uninterrupted power supplies, and technical expertise still limit
these assays to core laboratory settings. The turnaround time
for most NAAT-based assays is between 4 and 6 h, although
BioFire and Cepheid’s platforms have been able to improve on
this to as short as 75 min. Ultimately, this limits their ability to
be rapidly deployed in field settings in developing economies.
Loop-mediated isothermal amplification (LAMP) RT-PCR
bypasses many of the limitations of traditional NAAT, as the
lack of thermal cycling drastically simplifies the assay design
and equipment requirements. LAMP-based techniques have
been implemented as a simpler alternative to RT-PCR and
have been demonstrated with patient samples.15,16 In contrast,
antigen-based assays for filoviruses take advantage of LFAs,
including the ReEBOV Antigen Rapid Test (Corgenix), the
OraSure Ebola Rapid Antigen Test (Orasure Technologies),
and SD Q Line Ebola Zaire Ag (SD Biosensor). LFAs are an
attractive platform on which to develop rapid, point-of-care
(POC) diagnostics due their ease of use, low cost, and rapid
time to result.17 Conventional LFAs, such as those employed
for pregnancy testing or SARS-CoV-2 rapid antigen tests,
typically employ gold nanoparticles or latex beads with dyes as
reporter molecules.18 The resultant readout signal is
colorimetric and sufficient in many applications where a
binary answer for infection is sufficient. A major disadvantage
of LFA is its analytical sensitivity, which in turn can lead to

Figure 3. Calibration curves for PF-LFAs against filoviral sGP and detection of sGP from EBOV-infected non-human primate (NHP)
samples. (a) Calibration curves for the detection of EBOV sGP and SUDV sGP in spiked human serum with our PF-LFAs. All samples were pre-
incubated with PF−pan-filoviral antibodies for 15 min prior to running the assay. The lower limits of detection were 0.446 and 0.641 ng/mL for
EBOV sGP and SUDV sGP, respectively. Error bars represent the standard deviations for n = 2. (b) Comparison of results for PF-LFA and RT-
PCR on NHP samples infected with EBOV. All samples were pre-incubated with PF−pan-filoviral antibodies for 15 min prior to running the assay.
RT-PCR detected a total of 22/30 (73.3%) of samples as positive, whereas the PF-LFA platform detected 30/30 (100%). Samples with a
concentration value listed as 400 ng/mL had saturation of the fluorescent signal and therefore were considered positive. n = 3 for each of the
samples, with the exception of Specimen #23 in which n = 1.
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poor clinical sensitivity. While these tests can offer a
turnaround time between 15 and 30 min, the results are
qualitative, and the assays can only target EBOV. While there is
still significant work needed regarding prognostic markers of
filoviral infection, the lack of quantitative information on these
assays is a significant limitation.
In a resource-limited setting, the ability to accurately

diagnose patients is critical for the effective allocation of
healthcare resources and personnel.19 Our assay represents a
critical step in addressing and curbing outbreaks by combining
traditional LFA technology with PFs as the reporter molecules
to create an ultrasensitive, quantitative, and rapid diagnostic
test. As previously highlighted,9 PFs take advantage of precise
engineering of silver and gold nanorods to enhance the
brightness of fluorescent probes. This enhancement leads to a
drastic increase in the analytical sensitivity. Previous work with
PFs demonstrated an improvement of over 103 relative to a
more traditional colloidal gold LFA.9 When combined with a
fluorescent reader, PF-LFA assays can provide both a highly
sensitive and quantitative result. In combination with sGP, a
biomarker that is both diagnostic and potentially prognostic,
our assay provides an incredibly useful tool in combating
filoviral outbreaks.
Another advantage of our assay is the target biomarker for

filovirus infection, soluble glycoprotein (sGP). There are
several proposed roles for sGP in the pathogenesis of EBOV,
including as an immune decoy,20,21 for immunity modulation
of the infected host,22−24 or for activation of host signaling
pathways to augment uptake and internalization of the virus.25

Previous work has demonstrated that sGP levels rise
concurrently or even prior to RT-PCR positivity during
infection in NHP,12 which may allow for detection of
filoviruses during the incubation period following infection.26

The early rise of sGP may account for the improved
performance of our assay versus RT-PCR. In negative-sense,
single-stranded RNA viruses, a positive-sense antigenome is
used as a template to create genomic, negative-sense RNA. The
necessary molecular components for transcription may further
accentuate the lag between the presence of sGP and genome
copies, necessary for RT-PCR amplification. This may account
for the improved performance of our assay versus RT-PCR.
Additionally, the limited sample preparation necessary with our
assay might further improve its clinical sensitivity relative to
RT-PCR, which requires RNA extraction.
Importantly, the rapid development and deployment of the

diagnostic assay presented in this paper highlight one of the
technology’s biggest strengths: the ability to rapidly adapt
assays toward a variety of emerging and re-emerging
pathogens. The simplicity and modularity of the PF-LFA
assay design can be adapted for any existing sandwich pair and
still utilize the PFs. As highlighted by the recent SUDV
outbreak in Uganda, there is a paucity of analytical techniques
for filoviruses other than EBOV.6 This represents a critical gap
in our current arsenal of deployable diagnostics to address
future filoviral outbreaks�one that we believe our PF-LFA
platform addresses.
There are several challenges moving forward with our PF-

LFA. For one, the results highlighted in our paper were
conducted using a table-top reader, as previously described by
Gupta and colleagues.9 To fully utilize our assay in the field, a
portable reader is necessary that can operate without the need
for uninterrupted power (e.g., one with an internal battery).
The technical requirements for such a reader would also

necessitate minimal moving parts, tolerance to environment
variables in the field (e.g., temperature, humidity, and vibration
control), the ability to run on an internal battery, a low target
price, and a user interface and readout amenable for healthcare
workers who may not have technical laboratory experience.
Depending on where the assay is deployed, healthcare privacy
concerns regarding reporting of the test results are to be
considered as well.
Our study also focused on the use of serum, in part due to

the feasibility of the proof-of-concept study. Whole blood,
including capillary sticks, would require minimal sample
preparation and would be a preferable specimen to incorporate
into the PF-LFAs as it requires significantly less sample
preparation and could be acquired without vacutainers and the
need for centrifugation. A blood-to-serum separator pad can be
incorporated into the PF-LFAs, enabling the use of whole
blood such as that from finger sticks. The analytical
performance of such an addition would undoubtedly affect
the performance of our PF-LFAs and would require further
optimization.
Another potential challenge with our assay is the presence of

the hook effect�that is, the paradoxical decrease in signal
observed at higher concentrations of sGP.14 This can be
problematic if the assay is to be used for prognostication or
monitoring trends of sGP levels in infected patients. One
potential solution is to dilute samples from patients in which
the levels of sGP are inconsistent with the clinical presentation.
This may not always be obvious, especially given that the most
common symptoms of EVD are nonspecific,27 and therefore
further optimization of the PF-LFA will be required to
minimize the hook effect for field applications. However, if our
assay is to be used as a binary response for infection (e.g., yes
or no), then the hook effect plays a less significant role.
In summary, the results of our work highlight the utility of

PF-LFAs for the rapid, sensitive, and quantitative detection of
EBOV and SUDV, with a low ng/mL sensitivity and rapid time
to result. The flexible design of our assay, unique biomarker
target, and potential to be deployed in the field in future
iterations of the reader make our device appealing as a tool for
combating future filoviral outbreaks. The next steps in the
development of our assay will involve the optimization of our
assay design to improve analytical sensitivity and fully assess
cross-reactivity with a variety of pathogens and the
implementation of a portable reader to fully deploy the assay
in field settings.

■ METHODS
Resource Availability. Requests for further information

and for resources and reagents should be directed to the Lead
Contact, Gaya Amarasinghe (gamarasinghe@wustl.edu). This
study did not generate new unique reagents.
Method Details. Capture Agents and Antigens. EBOV

sGP (catalog no. 0565-001), SUDV sGP (catalog no. 0570-
001), antibodies against EBOV sGP (catalog no. 0365-001),
antibodies against SUDV sGP (catalog no. 0302-030), and
pan-filoviral antibodies (catalog no. N/A) were obtained from
Integrated Biotherapeutics (Rockville, MD). Control antibod-
ies consisted of ChromPure goat IgG, whole molecule (catalog
no. 005-000-003) and the conjugate PF−anti-goat IgG
(derived from AffiniPure mouse anti-goat IgG (catalog no.
205-005-108), both from Jackson ImmunoResearch Laborato-
ries, Inc.
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Plasmonic Fluors (PFs). PFs were produced by Auragent
Biosciences, LLC, as previously described.9 Pan-filoviral
antibodies and anti-goat IgG (AffiniPure mouse anti-goat
IgG (H+L) (min X Hu, Ms, Rb Sr Prot), catalog no. 205-005-
108, Jackson ImmunoResearch Labs) were conjugated to
PF800, a product for the 800 nm channel. PF800/pan-filoviral
antibodies were used as detection labels. PF800/anti-goat IgG
was used as a control label.
PF-LFA Printing and Preparation. FF120HP Plus (25 mm

width), a nitrocellulose-backed membrane bound to a 60 mm
× 300 mm polystyrene card backing (catalog no. 10547129,
Cytiva), was used for the preparation of the LFA strips. The
test lines were applied by dispensing 0.5 mg/mL anti-EBOV
capture antibody and 0.5 mg/mL anti-SUDV capture antibody
with a contact reagent dispenser with a 5 mm spacing from
each other. The control line was dispensed at a 5 mm distance
from the test lines with 1 mg/mL of goat IgG (ChromPure
Goat IgG, whole molecule, catalog no. 005-000-003, Jackson
ImmunoResearch Labs). After being dispersed, the membranes
were dried in a vacuum desiccator overnight.
For pre-incubation studies, a sample pad (Whatman

Standard 14, Cytiva) blocked with 5% BSA, 5% Sucrose,
0.5% Tween 20, and 1X PBS and an absorbent pad (CF5,
Cytiva) were assembled with the nitrocellulose membrane
card, with an overlap of 2 mm, and then cut to strips with a
width of 3 mm.
For strips with full-strip format, PF800/pan-filoviral anti-

bodies were sprayed on a conjugate pad (Whatman Standard
14, Cytiva), and it was assembled with a sample pad (Fusion 5,
Cytiva) blocked with 5% BSA, 5% sucrose, 0.5% Tween 20,
and 1X PBS and an absorbent pad (CF5, Cytiva) along with a
nitrocellulose membrane card, with an overlap of 2 mm, and
then cut to strips with a width of 3 mm.
Reader Device. PF-LFAs were read on a custom-built, table-

top reader constructed by Auragent Biosciences, LLC. Details
can be found in previous literature.9 Briefly, the current table-
top reader consists of an 80 mW, 785 nm diode laser (catalog
no. Z80M18S3-F-785-pe, Zlaser) for excitation and an 832/37
nm emission filter (catalog no. 84-107, Edmund Optics).
Non-Human Primate (NHP) Serum Specimens. NHP

specimens were obtained from a prior study of rhesus
macaques challenged with EBOV and treated post-exposure
with either a cocktail of three monoclonal antibodies (MB-03)
or control.28 Specimens were identical to those used in a
previous study utilizing a photonic resonator-based assay.12

USAMRIID standard procedures were used to process the
specimens.29 RT-PCR status and days post-infection were
known for each serum specimen received (Table S1-Sn).
All animal studies were performed under the approval of the

local IACUC committees and were performed in compliance
with the Animal Welfare Act and other federal statutes and
regulations relating to animals. The USARMIID is accredited
by the Association for Assessment and Accreditation of
Laboratory Animal Care, International (AAALAC) and
adheres to principles stated in the Guide for the Care and
Use of Laboratory Animals, National Research Council. All
challenge studies were conducted under maximum contain-
ment in an animal biosafety level (BSL)-4 facility at
USAMRIID.
Pre-Incubation Studies. The specificity of SUDV and

EBOV antibodies was assessed by incubation of samples within
10% pooled human serum diluted in 1X PBS with varying
concentrations of spiked EBOV sGP and SUDV sGP.

Lyophilized PF800/pan-filoviral antibodies and PF800/anti-
goat IgG were incubated with the 10% human serum spiked
with EBOV sGP and SUDV sGP for 0−60 min prior to
delivery to the PF-LFA strip (60 μL of the pre-incubated
sample was applied to the LFA strip). Each experimental
parameter was completed for n = 1.
Non-human Primate Specimen Testing. NHP specimens

were first diluted 10 times in 1X PBS and then incubated with
lyophilized detection label and control label for 15 min prior to
delivery to the PF-LFA strip (60 μL of the pre-incubated
sample was applied to the LFA strip). Each sample was run n =
3, with the exception of Specimen 23 (n = 1) due to limited
specimen availability.
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