86 research outputs found

    Methodology of ground temperature monitoring system development

    Get PDF
    The paper presents the proposed methodology of ground temperature monitoring, which can be used for geotechnical monitoring of mountainous and northern infrastructure in the areas of seasonal and long-term ground freezing in order to protect these infrastructure facilities from destruction due to seasonal and long-term changes in the bearing capacity of the ground

    Geophysical studies of the structure and properties of snow cover at Elbrus region

    Get PDF
    The paper presents an approach to the study of the structure and properties of snow cover, as well as its quantitative reserves and heterogeneities. Conclusions are drawn and recommendations are given on the possibility of using the geo-radar method in the study of ski slopes

    Propagation of a cold wave in the snow during the preparation of ski slopes by salting

    Get PDF
    The paper presents a method of hydrological and hydrophysical studies to observe the propagation of a cold wave in the snow during the preparation of ski slopes by salting. Salting is used in the preparation of ski slopes for competitions, especially when the average daily air temperature is approaching positive levels, and during the day there is a melting of snow cover, for a short-term decrease in the temperature of the snow column and its partial freezing. The experiments were carried out in the summer of 2021 and 2022 on the Dzhanquat and Garabashi glaciers of the Caucasus. The experiments used thermal sensors and a temperature logger manufactured by LLC "MSU-Geophysics". The temperature sensors were located on a rod stuck in the snow with an interval of 5 cm. The temperature was measured every minute. With a single salting, a cold wave was observed for about 4-5 hours and with freezing of the lower strata with a decrease in the temperature of the underlying snow layers to -3--5 °C.The analysis of the observational data showed the propagation of the cold wave deep into 50-60 cm. The research method will allow us to investigate the peculiarities of the propagation of the cold wave during salting and optimize the salting process for the most effective preparation of ski slopes for competitions

    Observation of Parametric Instability in Advanced LIGO

    Get PDF
    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress

    Native and graphene-coated flat and stepped surfaces of TiC

    Get PDF
    Titanium carbide attracts growing interest as a substrate for graphene growth and as a component of the composite carbon materials for supercapacitors, an electrode material for metal-air batteries. For all these applications, the surface chemistry of titanium carbide is highly relevant and being, however, insufficiently explored especially at atomic level is a subject of our studies. Applying X-ray photoelectron spectroscopy (XPS) to clean (111) and (755) surfaces of TiC, we were able to obtain the detailed spectroscopic pattern containing information on the plasmon structure, shake up satellite, the peak asymmetry and, finally, surface core level shift (SCLS) in C 1s spectra. The latter is essential for further precise studies of chemical reactions. Later on, we studied interface between TiC (111) and (755) and graphene and found the SCLS variation due to strong chemical interaction between graphene and substrate. This interaction is also reflected in the peculiar band structure of graphene probed by angle-resolved photoelectron spectroscopy (ARPES). Based on LEED data the structure is close to (7√3 × 7√3)R30°, with graphene being slightly corrugated. We found that similarly to the graphene on metals, the chemical interaction between graphene and TiC can be weakened by means of intercalation of oxygen atoms underneath graphene.We thank Helmholtz-Zentrum Berlin (HZB) for the allocation of synchrotron radiation beamtimes at the Russian-German and UE112-PGM2 beamlines. The work was financially supported by the Russian Science Foundation (project 16-42-01093). DFT calculations were performed at “Lomonosov” MSU supercomputer.Peer reviewe

    Newly identified climatically and environmentally significant high-latitude dust sources

    Get PDF
    Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth\u27s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km2^{2}, >560 000 km2^{2}, and >240 000 km2^{2}, respectively. In the Arctic HLD region (≥60^{∘} N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2^{2}), area with SI ≥0.7 is 2.3 % (440 804 km2^{2}), and area with SI ≥0.9 is 1.1 % (208 701 km2^{2}). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50^{∘} N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55^{∘} N in Canada and a “cold HLD-source area” including areas north of 60^{∘} N in Eurasia and north of 58^{∘} N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

    Get PDF
    Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning
    corecore