33 research outputs found

    Aqueous hydroxylation mediated synthesis of crystalline calcium uranate particles

    Get PDF
    Metal uranates(VI) are solubility limiting U(VI) phases under high pH conditions and may act as suitable long-term wasteforms. The precipitation and thermal phase development mechanisms of calcium uranate particles formed via aqueous hydroxylation reactions are studied in order to address the lack of aqueous synthesis methods currently available. Hydrous Ca-deficient uranate particles formed from aqueous solutions saturated in U(VI) oligomers were found to thermally decompose via several weight-loss steps between 100 and 800 °C. Crystalline calcium uranate (Ca2U3O11) is initially formed at 700 °C via dehydration and dehydroxylation-olation reactions under redox-neutral conditions. This initial phase decomposes to biphasic CaUO4-UO2 particles at 800 °C via a reductive pathway

    HESEB The Helmholtz state of the art Soft X Ray Undulator beamline at SESAME

    Get PDF
    SESAME and a consortium of five Helmholtz Centers are designing and installing a state of the art soft X Ray undulator beamline at the SESAME light source in Amman, Jordan. Funding is provided by the Helmholtz Association over a four year project cycle that started in January 2019. This is an interim report covering the first 36 months of the project where the construction and installation has been almost completed and commissioning and characterization of the beamline is about to start. Additionally, seminars, workshops, and a training program are part of the project aimed at establishing a broad user communit

    Wayforlight : the Catalogue of European light sources

    Get PDF
    Wayforlight.eu is the gateway to find-ing the most suitable instruments for experiments with synchrotron, FEL, and laser light sources. The portal's main asset is a de-tailed searchable catalogue of facilities, beam-lines, and instrumentation available at Euro-pean light sources. Thanks to its advanced search tools, a visitor can filter beamlines by scientific discipline, by technique, but also by energy range or sample type

    Uranyl sorption species at low coverage on Al-hydroxide: TRLFS and XAFS studies

    No full text
    International audienceDetailed understanding of the respective roles of solution and surface parameters on the reactions at uranyl solution/Al-(hydr)oxide interfaces is crucial to model accurately the behaviour of U in nature. We report studies on the effects of the initial aqueous uranyl speciation in moderately acidic solutions, e.g. of mononuclear, polynuclear uranyl species and/or (potential) U(VI) colloids, on the sorption of U by large surface areas of amorphous Al-hydroxide. Investigations by Extended X-ray Absorption Fine Structure (EXAFS) and Time-Resolved Laser-induced Fluorescence Spectroscopy (TRLFS) reveal similar U coordination environments on Al-hydroxide for low to moderate U loadings of sorption samples obtained at pH 4–5, independently of the presence of mononuclear or polynuclear aqueous species, or of the potential instability of initial solutions favoring true U-colloids formation. EXAFS data can be interpreted in terms of a dimeric, bidentate, inner-sphere uranyl surface complex as an average of the U surface structures. TRLFS data, however, provide valuable insights into the complex U surface speciation. They indicate multiple uranyl surface species under moderately acidic conditions, as predominant mononuclear and/or dinuclear, inner-sphere surface complexes and as additional minor species having U atoms in a uranyl (hydr)oxide-like coordination environment. The additional species probably occur as surface polymers and/or as adsorbed true U colloids, depending on the aqueous U concentration level (1–100 μM). These results are of importance because they suggest that Al-hydroxide surface characteristics strongly control uranyl surface species in moderately acidic systems

    Synchrotron X-Rays for Microstructural Investigations of Advanced Reactor Materials

    No full text
    X-rays from synchrotron beamlines provide a powerful tool for materials analysis in circumstances where long-term materials degradation under complex loading conditions (e.g., temperature, irradiation, and stress) becomes important. This may occur for advanced gas cooled reactors. Synchrotron X-rays can help to improve lifetime assessments by providing a more in-depth understanding of microstructural damage. This article summarizes results of X-ray absorption fine spectrum analysis and X-ray magnetic circular dichroism synchrotron techniques. They were employed to evaluate various microstructural features, which are important in understanding the lifetime of materials exposed to extreme conditions. Dispersoid strengthening by yttria particles, conditions that produce nanocrystal Zircaloy, and the role of magnetism on the stability of ferritic steels were taken as examples

    Condition Monitoring of High Temperature Components With Sub-Sized Samples

    No full text
    Advanced nuclear plants are designed for long-term operation in quite demanding environments. Limited operation experience with the materials used in such plants necessitate a reliable assessment of damage and residual life of components. Non-destructive condition monitoring of damage is difficult, if not impossible for many materials. Periodic investigation of small samples taken from well defined locations in the plant could provide an attractive tool for damage assessments. This paper will discuss possibilities of using very small samples taken from plant locations for complementary condition monitoring. Techniques such as micro/nano-indentation, micropillar compression, micro bending, small punch and thin strip testing can be used for the determination of local mechanical properties. Advanced preparation techniques such as focused ion beam (FIB) allow the preparation of samples from these small volumes for micro-structural analyses with transmission electron microscope (TEM) and advanced X-ray synchrotron techniques. Modeling techniques (e.g. dislocation dynamics DD) can provide a quantitative link between microstructure and mechanical properties. Using examples from ferritic oxide dispersion strengthened materials the DD approach is highlighted to understand component life assessments

    pH-dependence of uranyl uptake on quartz : a XPS study

    No full text
    URL : http://bibliothek.fzk.de/zb/berichte/FZKA6986.pdf#page=60International audienceAdvances in Laser Ablation of Materials: a Materials Research Society Symposiu

    Synchrotron Light Techniques for the Investigation of Advanced Nuclear Reactor Structural Materials

    No full text
    In the frame of the Generation IV initiative, different structural material candidates are investigated at the Paul Scherrer Institute. These are oxide dispersion strengthened (ODS) steels, intermetallic materials and ceramic composite materials. The response of the material to different potential loads (irradiation, temperature …) is addressed in a multi-scale approach, both, modelling wise and also experimentally. The investigation of each scale delivers at least a qualitative understanding of possibly evolving damage in the material and also delivers a validation of the corresponding scale on the modelling side. From the experimental side, the lower end of the scale, the atomistic and structural level, can be investigated by conventional techniques, as for example transmission electron microscopy (TEM) and X-ray diffraction (XRD). However, the use of synchrotron radiation techniques offers an ideal, complementary way to investigate the material structure and other properties. This paper presents applications in the field of the ODS research, where the structural behaviour of the nanoscopic dispersoids can selectively be investigated, although only being present with roughly 5 wt % in the matrix. A study showing the structural behaviour of these oxide particles as a function of irradiation illustrates the potential of the extended X-ray absorption fine structure (EXAFS) technique. Using X-ray magnetic circular dichroism (XMCD), which is a difference-signal of two X-ray absorption spectra recorded for positive and negative helicities of the beam, the magnetic structure and some magnetic parameters, can be resolved. An example shows, how this can be applied to understand (Fe,Cr) systems, which is the base alloy of the investigated ODS steel. The results deliver an important crosscheck for modelling. Beside the presentation of these techniques, this paper shows how beamline techniques can serve nuclear research, with possibly activated materials. At the Paul Scherrer Institute, a sample holder for highly active materials has been developed, and has already served for EXAFS measurements at the Swiss Light Source (SLS). The set-up of this sample holder is briefly presented here
    corecore