126 research outputs found

    The volumetric rate of calcium-rich transients in the local universe

    Get PDF
    We present a measurement of the volumetric rate of `calcium-rich' optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies, and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.210.39+1.13×1051.21^{+1.13}_{-0.39}\times10^{-5} events yr1^{-1} Mpc3^{-3}. This is equivalent to 33-94% of the local volumetric type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05M\mathrm{M}_{\odot}. We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest calcium-rich transients prefer large physical offsets from their host galaxies.Comment: Accepted for publication in ApJ. 9 pages, 5 figure

    Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties

    Get PDF
    The late-time spectra of Type Ia supernovae (SNe Ia) are powerful probes of the underlying physics of their explosions. We investigate the late-time optical and near-infrared spectra of seven SNe Ia obtained at the VLT with XShooter at >>200 d after explosion. At these epochs, the inner Fe-rich ejecta can be studied. We use a line-fitting analysis to determine the relative line fluxes, velocity shifts, and line widths of prominent features contributing to the spectra ([Fe II], [Ni II], and [Co III]). By focussing on [Fe II] and [Ni II] emission lines in the ~7000-7500 \AA\ region of the spectrum, we find that the ratio of stable [Ni II] to mainly radioactively-produced [Fe II] for most SNe Ia in the sample is consistent with Chandrasekhar-mass delayed-detonation explosion models, as well as sub-Chandrasekhar mass explosions that have metallicity values above solar. The mean measured Ni/Fe abundance of our sample is consistent with the solar value. The more highly ionised [Co III] emission lines are found to be more centrally located in the ejecta and have broader lines than the [Fe II] and [Ni II] features. Our analysis also strengthens previous results that SNe Ia with higher Si II velocities at maximum light preferentially display blueshifted [Fe II] 7155 \AA\ lines at late times. Our combined results lead us to speculate that the majority of normal SN Ia explosions produce ejecta distributions that deviate significantly from spherical symmetry.Comment: 17 pages, 12 figure, accepted for publication in MNRA

    The rise and fall of an extraordinary Ca-rich transient: The discovery of ATLAS19dqr/SN 2019bkc

    Get PDF
    This work presents the observations and analysis of ATLAS19dqr/SN 2019bkc, an extraordinary rapidly evolving transient event located in an isolated environment, tens of kiloparsecs from any likely host. Its light curves rise to maximum light in 5-6 d and then display a decline of Δm15 ∼ 5 mag. With such a pronounced decay, it has one of the most rapidly evolving light curves known for a stellar explosion. The early spectra show similarities to normal and "ultra-stripped" type Ic SNe, but the early nebular phase spectra, which were reached just over two weeks after explosion, display prominent calcium lines, marking SN 2019bkc as a Ca-rich transient. The Ca emission lines at this phase show an unprecedented and unexplained blueshift of 10 000-12 000 km s-1. Modelling of the light curve and the early spectra suggests that the transient had a low ejecta mass of 0.2-0.4 M⊙ and a low kinetic energy of (2-4) × 1050 erg, giving a specific kinetic energy Ek/Mej ∼ 1 [1051 erg]/M⊙. The origin of this event cannot be unambiguously defined. While the abundance distribution used to model the spectra marginally favours a progenitor of white dwarf origin through the tentative identification of Ar II, the specific kinetic energy, which is defined by the explosion mechanism, is found to be more similar to an ultra-stripped core-collapse events. SN 2019bkc adds to the diverse range of physical properties shown by Ca-rich events. © ESO 2020

    The mystery of photometric twins DES17X1boj and DES16E2bjy

    Get PDF
    We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = −15.4 and −17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800  km s−1 for DES17X1boj and 4800  km s−1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca II absorption (⁠v ≈ 9400 km s−1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors

    From core collapse to superluminous: The rates of massive stellar explosions from the Palomar Transient Factory

    Get PDF
    We present measurements of the local core-collapse supernova (CCSN) rate using SN discoveries from the Palomar Transient Factory (PTF). We use a Monte Carlo simulation of hundreds of millions of SN light-curve realizations coupled with the detailed PTF survey detection efficiencies to forward model the SN rates in PTF. Using a sample of 86 CCSNe, including 26 stripped-envelope SNe (SESNe), we show that the overall CCSN volumetric rate is CCv=9.10-1.27+1.56× 10-5SNe yr-1Mpc-3, h703 at za = 0.028, and the SESN volumetric rate is SEv=2.41-0.64+0.81× 10-5SNe yr-1Mpc-3, h703. We further measure a volumetric rate for hydrogen-free superluminous SNe (SLSNe-I) using eight events at z ≤ 0.2 of SLSN-Iv=35-13+25 SNe yr-1Gpc-3, h703, which represents the most precise SLSN-I rate measurement to date. Using a simple cosmic star formation history to adjust these volumetric rate measurements to the same redshift, we measure a local ratio of SLSN-I to SESN of ∼1/810+1500-94, and of SLSN-I to all CCSN types of ∼1/3500+2800-720. However, using host galaxy stellar mass as a proxy for metallicity, we also show that this ratio is strongly metallicity dependent: in low-mass (logM∗ < 9.5 M·) galaxies, which are the only environments that host SLSN-I in our sample, we measure an SLSN-I to SESN fraction of 1/300+380-170 and 1/1700+1800-720 for all CCSN. We further investigate the SN rates a function of host galaxy stellar mass, and show that the specific rates of all CCSNe decrease with increasing stellar mass

    Early observations of the nearby type Ia supernova SN 2015F

    Get PDF
    We present photometry and time-series spectroscopy of the nearby type Ia supernova (SN Ia) SN 2015F over 16-16 days to +80+80 days relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 2015F is a slightly sub-luminous SN Ia with a decline rate of Δm15(B)=1.35±0.03\Delta m15(B)=1.35 \pm 0.03 mag, placing it in the region between normal and SN 1991bg-like events. Our densely-sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II λ6580\lambda 6580 absorption until 4-4 days, and high-velocity Ca II is particularly strong at 1400014000 km s1^{-1}, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at \sim6800 \AA\ that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 \AA\ feature is weakly present in other normal SN Ia events, and common in the SN 1991bg-like sub-class
    corecore