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Abstract

We present a measurement of the volumetric rate of “calcium-rich” optical transients in the local universe, using a
sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed
study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey.

1.13

We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.217(35 x
1075 events yr ' Mpc . This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This
calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming
an asymptotic calcium yield per calcium-rich event of ~0.05 M. We also study the PTF detection efficiency of
these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect
previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.
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1. Introduction

Over the past decade, all-sky optical time-domain surveys
have uncovered a new class of so-called “Ca-rich” transients
(Perets et al. 2010; Kasliwal et al. 2012; Valenti et al. 2014;
Lunnan et al. 2017). These events have properties intermediate
to those of supernovae (SNe) and novae, with characteristics
that set them apart from the classical SN population: absolute
magnitudes in the range of —15 to —16.5mag, a rapid
photometric evolution with rise times of 10-15 days, photo-
spheric velocities of 6000—11,000 km s~! and a fast spectro-
scopic evolution to calcium-dominated nebular spectra.

The number of published events remains small: Lunnan et al.
(2017) considered a combined sample of eight events with
good photometric coverage. These objects all occurred in the
outskirts of early-type galaxies, at ~8—80 kpc from the centers,
and with a tentative preference for cluster environments. This
suggests a metal-poor (and perhaps also old) explosion
environment, ruling out a massive-star origin if they are formed
in situ. Yuan et al. (2013) showed that their locations are
consistent with globular cluster distributions. However, photo-
metric searches for globular clusters at the positions of known
Ca-rich transients have, on the whole, been unsuccessful
(Lyman et al. 2014, 2016; Foley 2015; Lunnan et al. 2017).

Several progenitor scenarios have been suggested to explain
the physical origin of Ca-rich events. These include helium-
shell detonations (without core detonations) on the surface
of low-mass carbon—oxygen (CO) white dwarfs (Waldman
et al. 2011), collisions in binary systems involving an He donor
and a CO or ONe white dwarf (Garcia-Berro et al. 2017), and
suggestions that they may result from the tidal disruption of CO
white dwarfs by intermediate-mass black holes (Rosswog
et al. 2009; Metzger 2012; Sell et al. 2015).

Ca-rich transients may also play an important role in other
areas of astrophysics. A long-standing puzzle is the origin of the
observed Ca/Fe overabundance in the intracluster medium
(ICM; de Plaa et al. 2007; Mernier et al. 2016a), which cannot
be explained by the yields of traditional SN classes such as

core-collapse SNe (CCSNe) and SNe Ia. Mulchaey et al. (2014)
showed that a contribution from Ca-rich transients could provide
a source of calcium to match the ICM measurements. The
remote locations would also make them efficient at polluting the
ICM, since their ejecta does not have to escape a galaxy potential
(Zaritsky et al. 2004). The source of Galactic positrons has also
been suggested to be due to faint thermonuclear SNe (Perets
et al. 2010) that produce the positron emitter ““Ti, with the decay
of “*Ti leading to the production of 44Ca, either through the
merger of two white dwarfs (Crocker et al. 2017) or as a natural
by-product of He-shell detonation (Waldman et al. 2011).

However, the rate of Ca-rich transients is uncertain owing to
the small numbers discovered to date. This is a by-product of
the faintness and speed of their light curves, which make them
difficult to detect. Absolute volumetric rates have not been
calculated for a homogeneous sample of Ca-rich transients
before; rather, rates relative to SNe Ia have been inferred.
Perets et al. (2010) inspected the spectra of objects in the Lick
Observatory Supernova Search (Filippenko et al. 2001) for
possible Ca-rich candidates. An incompleteness assumption
was made to produce a sample of 2.3 Ca-rich transients and 31
SNe Ia in the same search. They concluded that the Ca-rich rate
is some 7% of the SN Ia rate. Similarly, Kasliwal et al. (2012)
placed a lower limit on the Ca-rich rate by comparing the
number of Ca-rich events discovered in the Palomar Transient
Factory (PTF; Rau et al. 2009) to the number of SNe Ia in the
same volume. Without any assumption of PTF’s incomplete-
ness, they estimated that the Ca-rich transient rate must be
>2.3% of the SN Ia rate. A proper treatment of the survey
incompleteness will also help explain the apparent preference
for remote locations due to a potential for selection biases in
their discovery (for example, it is easier to discover transients
on fainter backgrounds away from galaxies).

The aim of this paper is to determine the absolute volumetric
rate of Ca-rich transients, using a sample from PTF, and to
determine whether they have a preference for the outskirts of
galaxies. PTF was an automated optical sky survey operating at
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Figure 1. Three calcium-rich transients entering our sample, and their positions on the sky. Top left: the three light curves in apparent magnitude space, together with
the Bazin et al. (2009) functional fits overplotted. The other three panels show the PTF survey area considered in each year: 2010 (top right), 2011 (bottom left), and
2012 (bottom right). In each panel, the simulated areas are shown as green boxes, and the positions of the calcium-rich transients are shown as crosses. The color-

coding shows the fraction of simulated events that passed the coverage cuts.

the Samuel Oschin 48 inch telescope (P48) at the Palomar
Observatory, specifically designed for transient detection. This
paper builds on a comprehensive study of the PTF detection
efficiencies presented in Frohmaier et al. (2017, hereafter F17)
and applies them to a controlled sample of PTF Ca-rich events
to estimate the first absolute rate of these events. Throughout,
we assume a flat ACDM cosmological model with Qy; = 0.3
and a Hubble constant of Hy = 70 kms~' Mpc™".

2. The Ca-rich Sample

A parent sample of Ca-rich SNe in PTF was presented by
Lunnan et al. (2017). This identified four likely members of the
class (PTF11kmb and PTF12bho, along with PTF10iuv and
PTF11bij previously identified by Kasliwal et al. 2012). Their
sample also included PTF09dav (Sullivan et al. 2011). How-
ever, we have excluded this object, as it displays unusual
photospheric spectra and late-time spectra that include hydro-
gen emission (Kasliwal et al. 2012), and thus it is likely not a
member of the same class.

F17, and thus our study, is further restricted to the PTF
survey period 2010-2012 (note that this would also exclude
PTF09dav) and to periods when PTF was observing in the
R-band filter (Rp4g), around 85% of the survey. We also require
all objects in the sample to have been observed on at least four
nights from —15 to +30 days from peak brightness,
conventionally defined as day zero. PTF11bij was observed
mainly in the PTF g-band filter and has insufficient Rp4g data to
pass this requirement; thus, it is excluded from our analysis.
Our final sample therefore has three events.

The light curves of these three events are shown in Figure 1,
along with smoothed Rp4g light-curve templates fitted using the
phenomenological functional form of Bazin et al. (2009),
which is sufficient to fit the shape of most smoothly evolving

SNe. These model fits will be used in our simulations to model
the Ca-rich events.

To determine the PTF spectroscopic completeness of Ca-rich
transients, Lunnan et al. (2017) searched the PTF database for
all objects that had luminosities between those of SNe and
novae. They found one additional transient that may be a
Ca-rich event (PTF10hcw), but its sparse light curve means that
it does not pass our light-curve quality criteria. We note that if
further objects were unconfirmed in the PTF database, this
would have the effect of increasing the rate of Ca-rich
transients that would be determined.

3. The Rate of Ca-rich SNe

We next outline our method for determining the Ca-rich
transient volumetric rate. The challenges are our small sample
size, the large PTF observing footprint, and the variable
cadence of the PTF observing strategy. We experimented with
an “efficiency-based” method, weighting each event by its
overall detection efficiency, as often used in high-redshift SN
rate calculations from well-controlled surveys (e.g., Perrett
et al. 2012). However, the small number of events in our
sample, as well as the highly variable and sky-position-
dependent detection efficiencies of our events, made this
approach unreliable.

Instead, we used a Monte Carlo technique similar in concept
to that of Prajs et al. (2017). Given an input intrinsic volumetric
rate of events (7ippy), We simulate how many events PTF would
have expected to detect based on its observing strategy (Nopj).
By varying this input volumetric rate over a wide range of
values and determining how often Nop; = 3 in the simulations,
we can construct the probability distribution of the volumetric
Ca-rich rate, ry.
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Key to this approach is the PTF detection efficiency study
of F17. This study simulated around 7 million point sources in
the PTF survey and studied their detection efficiency by the
PTF pipeline as a function of source magnitude, host galaxy
surface brightness, and various observing conditions (seeing or
image quality, sky brightness, and limiting magnitude). From
this, multidimensional detection efficiency grids were con-
structed, allowing the detection efficiency of any point source
in any PTF image (and on any arbitrary host background) to be
calculated.

Our detailed procedure is as follows. We first set the area and
time period over which PTF would have been sensitive to Ca-
rich events. We chose 10 observational footprints from PTF over
2010-2012, with a total of 9428 deg” of sky. Each field was
observed in a rolling cadence by PTF for between 30 and 155
days (T°®; i denotes the field, from 1 to 10). These fields each
have a volume V; over the redshift range 0.0035 < z < 0.03,
inside which PTF was sensitive to calcium-rich events. This
volume is determined at the lower end by the redshift at which
the calcium-rich transients would saturate the PTF detector
(z = 0.0035) and at the upper end by the redshift at which the
faintest of the calcium-rich transients would no longer be
detected by PTF (z = 0.03).

A value for rjpp, is randomly chosen from the interval 1 x
107 events yr~! Mpc™ < rippue < 5 x 107 events yr~! Mpc 3
and used to randomly draw a number of events, Ny, from a
Poisson distribution

)\Ninpule_A
P(Ivinput; /\) = N 1 (1)
input -+

where \ = rinputZTi‘)bsVi and the sum runs over the 10 fields.
Each of these Nipu €vents is then randomly assigned a sky
position, date of peak brightness, and redshift, such that they
were uniformly distributed through the simulated volume and
survey duration. Each event was then randomly assigned a
Ca-rich light-curve template from Section 2, which was then
scaled to the assigned redshift.

Simulations were then performed, replicating the operation
of PTF and matching the nightly observing conditions and
cadence patterns. Each time PTF “observed” an artificial
Ca-rich transient, the F17 efficiencies were used to statistically
assess whether PTF would have detected the event at that
epoch. The recovered light curves of each simulated event were
then checked to determine whether they met the light-curve
quality criteria for the real sample: at least four detections over
at least four nights. The number of “observed” Ca-rich events,
Nopi, that met the criteria and the associated value of rjnp, for
that realization were recorded.

This process was repeated for >1.7 x 10° realizations of the
Ca-rich rate, at which point the statistical improvement from
further simulations became negligible. This resulted in the
analysis of >3.5 x 10® simulated Ca-rich light curves. Clearly,
this method of rate calculation is computationally expensive,
but the results of the simulation are easy to understand and the
uncertainties can be intuitively handled.

Figure 2 shows the fraction of our simulations that resulted
in Ny = 3 as a function of riyp,. The distribution is well
described by a skewed Gaussian, and we use this functional
form to estimate the most likely value of the Ca-rich rate and
the region containing 68.3% of the probability. The volumetric
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Figure 2. Fraction of our simulations that result in three Ca-rich transients
being detected by PTF (Nyp; = 3) as a function of the input volumetric rate
Finpur- The overplotted function is a skewed Gaussian, with the solid vertical
line denoting the median of the function and the vertical dotted lines denoting
the 68.3% confidence interval. See Section 3 for details.

rate of Ca-rich transients is then
rv = 1217033 x 1075 events yr~' Mpc =3 h3,.

The volume-weighted mean redshift of the simulation was
z = 0.023.

This represents the first direct measurement of the Ca-rich
transient rate and is equal to ~50% of the SN Ia rate at a similar
redshift (C. Frohmaier et al. 2018, in preparation). Combining
our rate with assumptions on the performance of the Zwicky
Transient Facility (ZTF; Bellm 2014; Laher et al. 2017), we
estimate that ZTF should discover more than 20 Ca-rich
transients each year. This order-of-magnitude improvement on
the sample statistics will revolutionize our understanding
of the volumetric rates, progenitors, and environments of these
events.

4. The Remote Locations of Calcium-rich Events

We now consider the efficiencies of recovering a Ca-rich
transient as a function of distance from its host galaxy. We use
the real observations of each detected Ca-rich event’s location
and the survey performance around the object discovery date to
assess whether each real Ca-rich event would have been
discovered had it occurred in a different (but nearby) host
environment. This allows at least a partial disentanglement of
the intrinsic host environmental effects (e.g., bright galaxies)
from observational effects (e.g., cadence and depth), in that we
are restricted to survey periods and areas where the data were
known to be good enough to discover Ca-rich events.

We begin by measuring the surface brightnesses for the
Ca-rich transient host galaxies using high-quality reference
images of the fields. The reference images were made from
Rp,g observations, uncontaminated by SN light. Each image in
the stack was resampled to a common coordinate system and
co-added to produce a deep image. Potential host galaxies for
our Ca-rich events were identified in the literature (Kasliwal
et al. 2012; Lunnan et al. 2017) and form the sample for our
study. We then measure these galaxies in the images using
elliptical apertures and construct annuli containing fractions of
the integrated galaxy light out to a distance of at least 45 kpc.

We then simulate each of the three Ca-rich template light
curves from Figure 1 at a random position inside each of the
elliptical annuli for each galaxy. The date of peak brightness
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Figure 3. Study of the detection efficiency of the three PTF calcium-rich transients in our sample in relation to their host galaxies. Suspected host galaxies are
identified in green, and their surface brightness profiles were measured. Ca-rich events were simulated in annuli containing fractions of galaxy light. In the top panel
we show that if Ca-rich events followed the light profile, then PTF would have recovered more events than it missed. The efficiencies hit an apparent ceiling at larger
radii as a result of the different PTF cadence experiments, called the “5-day-cadence” (SDC) or the “dynamic cadence” experiment (DyC). The median cadences of the
PTF10iuv, PTF11kmb, and PTF12bho discovery fields were 4.95, 0.96, and 1.00 days, respectively. This result demonstrates that our Ca-rich sample is not
significantly biased to remote locations, and these transients preferentially occur at large radii. The bottom panel shows the normalized cumulative fraction of galaxy
light, as a function of distance from the galaxy core, for the nominal hosts. The arrows show the distance of each Ca-rich transient from the host and highlight the

remote location of the explosion environment.

for each of the real Ca-rich transients loosely sets the date of
our simulated events in the field: for each simulated event, we
chose a random date of peak brightness to be within 420 days
of the real event’s peak. We record the local surface brightness
and semimajor axis distance to the center of the galaxy for each
simulated event. We use the infrastructure of F17 to determine
whether each simulated event would have been detected, again
applying the requirement of four or more detections.

The results of our simulations—the fraction of events
successfully recovered in each annulus—are shown in
Figure 3. We find that galaxies with the brightest cores show
a reduced recovery efficiency. However, under the assumption
that the Rpsg-light approximately traces the galaxy stellar mass,
simulated Ca-rich events contained within the outer ~50% of
the stellar mass are recovered with a near-constant efficiency.

Furthermore, all the Ca-rich events in our sample were found
at larger distances than an isophote containing 100% of the
observable stellar light (i.e., where the galaxy flux becomes
indistinguishable from the background).

The final two galaxies in Figure 3 (H and I) had bright cores,
such that most of the luminosity was contained in an area
smaller than our spatial resolution. We therefore were unable to
reliably split our simulations into different elliptical annuli, and
instead we show the fraction of recovered events within a
single boundary containing 90% of the luminosity /stellar mass.

These simulations demonstrate that if the radial distribution
of Ca-rich transients follows the stellar mass of galaxies, PTF
would have been capable of finding more events than it missed,
i.e., the recovery fraction for the speculated hosts is ~50% or
more in an annulus containing 50% of the stellar mass.
Furthermore, we performed a simple Monte Carlo simulation of
Ca-rich events under the assumption that they follow the host
stellar light profile. We found that <8 x 107°% of the

simulations would produce all three events beyond the contours
enclosing 99% of the host light. This allows us to confidently
reject any hypothesis that suggests that Ca-rich transients
follow the stellar light. We conclude that the PTF Ca-rich
transient sample is not significantly biased owing to the
performance of the PTF experiment and that the large
separation between event and host galaxy is an astrophysically
real phenomenon. This confirms previous studies that show that
Ca-rich transients do not follow a host stellar mass profile
(Yuan et al. 2013), but with a robust consideration of the
efficiency of the PTF experiment.

A final consideration on the detection efficiency relates back
to the rates calculated in Section 3. If indeed there are Ca-rich
transients in the cores of galaxies, where our results suggest
that PTF has difficulty finding such events, then these objects
would increase the absolute volumetric rate we find. Since we
derive our Ca-rich rate from a sample of observed events,
strictly speaking it should be considered as a lower limit if a
significant population of Ca-rich events are later found to occur
in galaxy cores.

5. Intracluster Medium Calcium Abundances

In this section we discuss the implications of our rate
calculation with respect to the so-called “Calcium Conun-
drum.” Observations of the ICM show a Ca/Fe overabundance
when expected elemental yields from both SNe Ia and CCSNe
are included in the enrichment (e.g., de Plaa et al. 2007). It has
been shown that a non-negligible contribution from Ca-rich
SNe can potentially resolve this observed discrepancy
(Mulchaey et al. 2014; Mernier et al. 2016b).

We use the latest ICM abundance measurements (Mernier
et al. 2016a) of nine elements X = (O, Ne, Mg, Si, S, Ar, Ca,
Fe, and Ni) from XMM-Newton observations of 44 galaxy
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Figure 4. Observed ICM abundances from Mernier et al. (2016a) are shown by
the green circles, and the relative SN contributions are shown by the various
colored lines. The overall contribution from our SN models is shown by the
solid black line. The top panel represents our best-fit combination of SNe and
requires a dominant population of sub-Mc, SNe Ia. The next-best Ca-rich
model is shown in the bottom panel and requires a negligible contribution from
sub-Mc, SNe Ia. We find that the required Ca-rich rate to explain these
abundances is highly dependent on initial metallicity/mass of our other SN
classes, but that in all cases a significant Ca-rich population is required.

clusters. We then build on the work of Mernier et al. (2016b),
using their abunfit routine, to estimate the ratio of different
SN classes that contribute to the ICM pollution. We do not
attempt to definitively state the relative rates of the different
SN types; rather, we investigate whether the contribution of
Ca-rich SNe is compatible with our rate result.

The asymptotic elemental mass yields for our SN Ia
population are described by the Chandrasekhar-mass (Mcy,)
N100 models of Seitenzahl et al. (2013) and the latest sub-
Chandrasekhar-mass (sub-Mcy,) models of Shen et al. (2017).
We select our sub-Mc, models to have an initial metallicity of
0.5 or 1 Z, and C/O WD masses of 0.9 or 1.0 M., —which
best describe “normal” SNe Ia. The implementation of both the
CCSNe (Nomoto et al. 2013) and the Ca-rich helium-shell
detonation models (Waldman et al. 2011) into abunfit is
described in Mernier et al. (2016b). The initial metallicities
allowed for the CCSNe are Z;,,, = (0, 0.001, 0.004, 0.008, 0.02,
0.05), and a Salpeter initial mass function is assumed.

Frohmaier et al.

The abunfit routine performs a least-squares minimization
to find the relative ratios of the SN classes that contribute to the
X/Fe ICM abundances. The production of Mn and Ni is
especially sensitive to the initial metallicity for the SNe la
and the progenitor model used; furthermore, Ni is poorly
constrained in the ICM abundance measurements. We therefore
exclude Mn and Ni from our fits. In total, 336 model
combinations were fit to the ICM observations, with 149
producing physically meaningful results. Results were rejected
if they required nonpositive contributions from any model
yield.

We find that our best-fit result (y° /dof ~ 2.6) uses a
combination of the CO.5HE.2° Ca-rich model, the Z. CCSN
model, the N100 SN Ia model, and the Z, 1 M, sub-Mcy, SN
model. Our next best-fitting (X /dof ~ 3.9) Ca-rich model,
CO.5HE.2N.02, requires the same CCSN and Mc;, models as
before, but a different sub-Mc, model (Z., 0.9 M..).

The relative elemental yields for these results are shown in
Figure 4 and clearly confirm previous claims (Mulchaey
et al. 2014; Mernier et al. 2016b) that the ICM measurements
require a non-negligible contribution from Ca-rich SNe to
explain the Ca/Fe abundance ratio.

However, we note that while a contribution from a Ca-rich
model is required to produce good fits to the ICM, their relative
contribution can vary significantly depending on the CCSN and
SN Ia models we select. We demonstrate this by analyzing
different CCSN and SN Ia model combinations for a fixed
Ca-rich model. We then calculate the ratio of Ca-rich SNe to
SNe Ia and scale the SN Ia rate evolution (Dilday et al. 2010;
C. Frohmaier et al. 2018, in preparation) to estimate the Ca-rich
rate. Our results are shown in Figure 5, where any fit utilizing
the CO.5HE.2 or CO.5HE.2N.02 model, with a x~/dof < 5, is
considered. These results place the Ca-rich rate within the
range of 19%-53% of the SN Ia rate. This is compatible with
both our rate from Section 3 and the rate prediction of Mernier
et al. (2016b). They found that Ca-rich SNe made up ~34% of
their “thermonuclear” population, corresponding to a rate
~51% of the SN Ia rate.

Finally, we note that directly comparing SN rates derived
from ICM abundances and SN rates from direct observations is
a limited approach. The ICM abundance SN rates only trace
events that contribute to this environment, and not elemental
yields trapped in a galaxy potential. This would not necessarily
be a problem if the spatial distribution of all SN classes were
identical. However, as we have demonstrated in Section 4,
Ca-rich SNe preferentially occur at large distances from their
host—making them more effective polluters of the ICM. The
SN rates measured using the ICM abundance method are also
very dependent on the elemental yields estimated from the
various explosion models.

6. Conclusion

We have presented three results relating to Ca-rich faint-and-fast
transients: (i) using detailed simulations of PTF, we have calculated
the volumetric rate of Ca-rich transients to be 33%—94% of the SN
Ia rate, higher than previously suggested; (ii) we confirm, using
detection efficiencies from PTF, that Ca-rich events have an
intrinsic preference for locations significantly offset from their host

 The naming scheme for the Waldman et al. (2011) models represents the
mass of the C/O WD core and masses of additional layers. For example, a
0.5 M., C/O WD with a 0.2 M, helium shell is listed as CO.5HE.2.
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rates from SDSS-SN (Dilday et al. 2010), and the green circle is from PTF (C. Frohmaier et al. 2018, in preparation). The purple hatched region shows the possible
range of Ca-rich rates from our matching of different SN class elemental yields to ICM abundance observations. The dashed orange line shows the Ca-rich rate

prediction by Mernier et al. (2016b) from their best fit to the ICM data.

galaxy centers; and (iii)) we demonstrate that a non-negligible
contribution from Ca-rich transients, compatible with our rate, can
explain the observed ICM elemental abundances.

Attempts to unveil the intriguing nature of these transients
will benefit significantly from upcoming high-cadence, wide-
area (ZTF) and deep (LSST) sky surveys, where a larger
number of objects can be discovered. Key to this understanding
will be early detections so that follow-up spectra and multicolor
photometric observations can be obtained. Ultimately, studies
on light-curve diversity and evolution will lead to tighter
constraints on the explosion models and the asymptotic
elemental yields for ICM abundance analyses. Of course, large
samples of Ca-rich events will also improve the statistical
uncertainties associated with the rate calculations and offer
better insights into the host environments of these transients.
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