1,792 research outputs found

    Comparative evaluation of three clinical decision support systems: prospective screening for medication errors in 100 medical inpatients

    Get PDF
    Purpose: Clinical decision support systems (CDSS) are promoted as powerful screening tools to improve pharmacotherapy. The aim of our study was to evaluate the potential contribution of CDSS to patient management in clinical practice. Methods: We prospectively analyzed the pharmacotherapy of 100 medical inpatients through the parallel use of three CDSS, namely, Pharmavista, DrugReax, and TheraOpt. After expert discussion that also considered all patient-specific clinical information, we selected apparently relevant alerts, issued suitable recommendations to physicians, and recorded subsequent prescription changes. Results: For 100 patients with a median of eight concomitant drugs, Pharmavista, DrugReax, and TheraOpt generated a total of 53, 362, and 328 interaction alerts, respectively. Among those we identified and forwarded 33 clinically relevant alerts to the attending physician, resulting in 19 prescription changes. Four adverse drug events were associated with interactions. The proportion of clinically relevant alerts among all alerts (positive predictive value) was 5.7, 8.0, and 7.6%, and the sensitivity to detect all 33 relevant alerts was 9.1, 87.9, and 75.8% for Pharmavista, DrugReax and TheraOpt, respectively. TheraOpt recommended 31 dose adjustments, of which we considered 11 to be relevant; three of these were followed by dose reductions. Conclusions: CDSS are valuable screening tools for medication errors, but only a small fraction of their alerts appear relevant in individual patients. In order to avoid overalerting CDSS should use patient-specific information and management-oriented classifications. Comprehensive information should be displayed on-demand, whereas a limited number of computer-triggered alerts that have management implications in the majority of affected patients should be based on locally customized and supported algorithm

    Produktionsstandort Schweiz, einen neuen Aufbruch wagen!

    Get PDF

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Nanomechanical sensors: Measuring a response in blood

    Get PDF
    Nanomechanical cantilevers can determine the concentration of active drugs in human serum

    CONCENTRATION OF FATTY ACID ETHYL ESTERS IN HAIR OF ALCOHOLICS: COMPARISON TO OTHER BIOLOGICAL STATE MARKERS AND SELF REPORTED-ETHANOL INTAKE

    Get PDF
    Aims: In a variety of clinical and forensic situations long term use of alcohol must be monitored. In this project we explore the utility of fatty acid ethyl esters (FAEE) in this regard. Additionally, we propose a cut-off value of FAEE to distinguish teetotallers/moderate/social drinkers from alcoholics or individuals drinking at harmful levels. Patients and methods: FAEE levels from 18 alcohol-dependent patients in detoxification were contrasted with those of 10 social drinkers and 10 teetotallers. FAEE in hair were determined, using headspace solid phase microextraction and gas chromatography mass spectrometry. CFAEE, as sum of the concentrations of four esters, was compared to a major FAEE, ethyl palmitate. PEth was measured in heparinized whole blood with a high pressure liquid chromatography (HPLC) method. Drinking validation criteria include self reports, phosphatidyl ethanol (PEth) in whole blood as well as the traditional markers of heavy drinking, gamma glutamyl transpeptidase (GGT), mean corpuscular volume (MCV) and carbohydrate deficient transferrin (CDT). Results: Receiver-operating characteristic (ROC) curve analysis for CFAEE, indicated a sensitivity of 100% and a specificity of 90% for a cut-off of 0.29 ng/mg. By using a cut-off of 0.4 ng/mg, CFAEE identified 94.4% correctly. CFAEE and ethyl palmitate were significantly associated (r = 0.945; P < 0.001) as were CFAEE and PEth (r = 0.527; P = 0.025). No significant correlation was found between CFAEE and total grams of ethanol consumed last month, blood-alcohol concentration at admission to the hospital, CDT, MCV, or GGT. Among the serum and blood markers, %CDT identified 47.1%, MCV 38.8% and GGT 72.2% of patients with chronic intake of higher amounts of ethanol correctly, whereas PEth achieved 100% accuracy. Conclusions: The data suggest that CFAEE is a potentially valuable marker of chronic intake of high quantities of ethanol. Furthermore, the results indicate that a reasonable and provisional FAEE cut-off to distinguish between social/moderate and heavy drinking/alcoholism in hair is 0.4 ng/m

    Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach

    Full text link
    We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudo-vector choice for the covariant representation of the T-matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T-matrix representation. Starting from a complete pseudo-vector representation of the T-matrix, which reproduces correctly the pseudo-vector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.Comment: 35 pages RevTex, 7 PS figures, replaced by a revised and extended versio

    The role of nucleon structure in finite nuclei

    Get PDF
    The quark-meson coupling model, based on a mean field description of non-overlapping nucleon bags bound by the self-consistent exchange of σ\sigma, ω\omega and ρ\rho mesons, is extended to investigate the properties of finite nuclei. Using the Born-Oppenheimer approximation to describe the interacting quark-meson system, we derive the effective equation of motion for the nucleon, as well as the self-consistent equations for the meson mean fields. The model is first applied to nuclear matter, after which we show some initial results for finite nuclei.Comment: The revised version. This is tar, compressed and uuencoded (including 3 tables and 8 figures). 45 page

    Real-time DNA microarray analysis

    Get PDF
    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e. real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation in the capturing spots, washing artifacts, microarray spot-to-spot variations, and other signal amplitude-affecting non-idealities. We demonstrate in both theory and practice that the time-constant of target capturing in microarrays, similar to all affinity-based biosensors, is inversely proportional to the concentration of the target analyte, which we subsequently use as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to empirically validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays

    Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings

    Get PDF
    The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is generalized by introducing couplings of mesons to derivatives of the nucleon field in the Lagrangian density. This approach allows an effective description of a state-dependent in-medium interaction in the mean-field approximation. Various parametrizations for the generalized couplings are developed and applied to infinite nuclear matter. In this approach, scalar and vector self-energies depend on both density and momentum similarly as in the Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much less repulsive at high nucleon energies as compared to standard relativistic mean field models and thus agrees better with experimental findings. The derivative couplings in the extended model have significant effects on properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure
    corecore