23,313 research outputs found
Generation of non-Gaussian statistics and coherent structures in ideal magnetohydrodynamics
Spectral method simulations of ideal magnetohydrodynamics are used to investigate production of coherent small scale structures, a feature of fluid models that is usually associated with inertial range signatures of nonuniform dissipation, and the associated emergence of non-Gaussian statistics. The near-identical growth of non-Gaussianity in ideal and nonideal cases suggests that generation of coherent structures and breaking of self-similarity are essentially ideal processes. This has important implications for understanding the origin of intermittency in turbulence
Intermittency in passive scalar advection
A Lagrangian method for the numerical simulation of the Kraichnan passive
scalar model is introduced. The method is based on Monte--Carlo simulations of
tracer trajectories, supplemented by a point-splitting procedure for coinciding
points. Clean scaling behavior for scalar structure functions is observed. The
scheme is exploited to investigate the dependence of scalar anomalies on the
scaling exponent of the advecting velocity field. The three-dimensional
fourth-order structure function is specifically considered.Comment: 4 pages, 5 figure
Superhalogen and Superacid
A superhalogen and a corresponding Br{\o}nsted
superacid were designed and investigated on DFT and DLPNO-CCSD(T) levels of
theory. Calculated compounds have outstanding electron affinity and
deprotonation energy, respectively. We consider superacid
to be able to protonate molecular nitrogen. The
stability of these structures is discussed, while some of the previous
predictions concerning Br{\o}nsted superacids of record strength are doubted.Comment: 11 pages (main paper), 32 pages (supporting information), 10 figures,
10 tables, 62 reference
Graphene/Li-Ion battery
Density function theory calculations were carried out to clarify storage
states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin
polarization, charge distribution, electronic gap, surface curvature and dipole
momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by
one Li atom is spin polarized, so there would be different gaps for different
spin polarization in electrons. Calculation results demonstrated that a smaller
cluster between each two larger clusters is preferable, because it could
improve graphene Li-ion batteries; consequently, the most proper graphene anode
structure has been proposed.Comment: 19 pages, 7 figures, 1 tabl
A critical analysis of vacancy-induced magnetism in mono and bilayer graphene
The observation of intrinsic magnetic order in graphene and graphene-based
materials relies on the formation of magnetic moments and a sufficiently strong
mutual interaction. Vacancies are arguably considered the primary source of
magnetic moments. Here we present an in-depth density functional theory study
of the spin-resolved electronic structure of (monoatomic) vacancies in graphene
and bilayer graphene. We use two different methodologies: supercell
calculations with the SIESTA code and cluster-embedded calculations with the
ALACANT package. Our results are conclusive: The vacancy-induced extended
magnetic moments, which present long-range interactions and are capable of
magnetic ordering, vanish at any experimentally relevant vacancy concentration.
This holds for -bond passivated and un-passivated reconstructed
vacancies, although, for the un-passivated ones, the disappearance of the
magnetic moments is accompanied by a very large magnetic susceptibility. Only
for the unlikely case of a full -bond passivation, preventing the
reconstruction of the vacancy, a full value of 1 for the extended
magnetic moment is recovered for both mono and bilayer cases. Our results put
on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in
graphene-based systems, while still leaving the door open to -type
paramagnetism.Comment: Submitted to Phys. Rev B, 9 page
Electromagnetic Vacuum of Complex Media: Dipole Emission vs. Light Propagation, Vacuum Energy, and Local Field Factors
We offer a unified approach to several phenomena related to the
electromagnetic vacuum of a complex medium made of point electric dipoles. To
this aim, we apply the linear response theory to the computation of the
polarization field propagator and study the spectrum of vacuum fluctuations.
The physical distinction among the local density of states which enter the
spectra of light propagation, total dipole emission, coherent emission, total
vacuum energy and Schwinger-bulk energy is made clear. Analytical expressions
for the spectrum of dipole emission and for the vacuum energy are derived.
Their respective relations with the spectrum of external light and with the
Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk
energy are determined by the Dyson propagator. The emission spectrum and the
total vacuum energy are determined by the polarization propagator. An exact
relationship of proportionality between both propagators is found in terms of
local field factors. A study of the nature of stimulated emission from a single
dipole is carried out. Regarding coherent emission, it contains two components.
A direct one which is transferred radiatively and directly from the emitter
into the medium and whose spectrum is that of external light. And an indirect
one which is radiated by induced dipoles. The induction is mediated by one (and
only one) local field factor. Regarding the vacuum energy, we find that in
addition to the Schwinger-bulk energy the vacuum energy of an effective medium
contains local field contributions proportional to the resonant frequency and
to the spectral line-width.Comment: Typos fixed, journal ref. adde
Scalar transport in compressible flow
Transport of scalar fields in compressible flow is investigated. The
effective equations governing the transport at scales large compared to those
of the advecting flow are derived by using multi-scale techniques. Ballistic
transport generally takes place when both the solenoidal and the potential
components of the velocity do not vanish, despite of the fact that it has zero
average value. The calculation of the effective ballistic velocity is
reduced to the solution of one auxiliary equation. An analytic expression for
is derived in some special instances, i.e. flows depending on a single
coordinate, random with short correlation times and slightly compressible
cellular flow. The effective mean velocity vanishes for velocity fields
which are either incompressible or potential and time-independent. For generic
compressible flow, the most general conditions ensuring the absence of
ballistic transport are isotropy and/or parity invariance. When vanishes
(or in the frame of reference moving with velocity ), standard diffusive
transport takes place. It is known that diffusion is always enhanced by
incompressible flow. On the contrary, we show that diffusion is depleted in the
presence of time-independent potential flow. Trapping effects due to potential
wells are responsible for this depletion. For time-dependent potential flow or
generic compressible flow, transport rates are enhanced or depleted depending
on the detailed structure of the velocity field.Comment: 27 pages, submitted to Physica
- …