33 research outputs found

    Linear polarization–direction correlations in γ -ray scattering experiments

    Get PDF
    Scattering measurements with incident linearly polarized γ rays provide information on spins, parities, and γ-ray multipolarity mixing coefficients, and, therefore, on the nuclear matrix elements involved in the transitions. We present the general formalism for analyzing the observed angular correlations. The expressions are used to compute three-dimensional radiation patterns, which are important tools for optimizing experimental setups. Frequently, γ-ray transitions can proceed via two multipolarities that mix coherently. In such cases, the relative phases of the nuclear matrix elements are important when comparing results from different measurements. We discuss different phase conventions that have been used in the literature and present their relationships. Finally, we propose a basic experimental geometry consisting of detectors located at four different spatial locations. For this geometry, we present the measured anisotropies of the emitted γ rays in graphical format as an aid in the data analysis

    Low-lying dipole response of 64Ni

    Get PDF
    Two complementary real-photon scattering experiments were conducted on the proton-magic 64 Ni nucleus to study the dipole response up to its neutron-separation energy of S n = 9.7 MeV . By combining both measurements, 87 E 1 and 23 M 1 transitions were identified above 4.3 MeV. The results of the observed M 1 transitions were compared to shell-model calculations using two different model spaces. It was found that the inclusion of excitations across the Z = 28 shell gap in the calculations has a large impact. Furthermore, average cross sections for decays to the ground state (elastic transitions) as well as to lower-lying excited states (inelastic decays) were determined. The corresponding E 1 channel was compared to calculations within the relativistic equation of motion (REOM) framework. Whereas the calculations of highest possible complexity reproduce the fragmentation and overall behavior of the E 1 average elastic cross section well, the predicted absolute cross sections are approximately twice as high as the experimental upper limits even though the latter also include an estimate of the inelastic-decay channel

    Model-independent determination of the dipole response of <sup>66</sup>Zn using quasimonoenergetic and linearly polarized photon beams

    Get PDF
    Background: Photon strength functions are an important ingredient in calculations relevant for the nucleosynthesis of heavy elements. The relation to the photoabsorption cross section allows to experimentally constrain photon strength functions by investigating the photoresponse of atomic nuclei. Purpose: We determine the photoresponse of 66Zn in the energy region of 5.6 MeV to 9.9 MeV and analyze the contribution of the 'elastic' decay channel back to the ground state. In addition, for the elastic channel electric and magnetic dipole transitions were separated. Methods: Nuclear resonance fluorescence experiments were performed using a linearly polarized quasi-monoenergetic photon beam at the High Intensity gamma -ray Source. Photon beam energies from 5.6 to 9.9 MeV with an energy spread of about 3% were selected in steps of 200-300 keV. Two high purity germanium detectors were used for the subsequent gamma -ray spectroscopy. Results: Full photoabsorption cross sections are extracted from the data making use of the monoenergetic character of the photon beam. For the ground-state decay channel, the average contribution of electric and magnetic dipole strengths is disentangled. The average Conclusions: The new results indicate lower cross sections when compared to the values extracted from a former experiment using bremsstrahlung on 66Zn. In the latter, the average branching ratio to the ground state is estimated from statistical-model calculations in order to analyze the data. Corresponding estimates from statistical-model calculations underestimate this branching ratio compared to the values extracted from the present analysis, which would partly explain the high cross sections determined from the bremsstrahlung data

    Design of an optimized nested-mirror neutron reflector for a NNBAR experiment

    Get PDF
    The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with an expected sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes both the simulations of a key component for the experiment, the neutron optical reflector and the expected gains in sensitivity

    The HIBEAM program: search for neutron oscillations at the ESS

    Full text link
    With the construction of the European Spallation Source, a remarkable opportunity has emerged to conduct high sensitivity searches for neutron oscillations, including a first search for thirty years for free neutrons converting to antineutrons. Furthermore, searches can be made for transitions of neutrons and antineutrons to sterile neutron states. The HIBEAM program provides an increase in sensitivity of an order of magnitude compared to previous work. The HIBEAM program corresponds to baryon number violation by one and two units. The observation of a process satisfying a Sakharov condition addresses the open question of the origin of the matter-antimatter asymmetry in the Universe. Sterile neutron states would belong to a `dark' sector of particles which may explain dark matter. As electrically neutral, meta-stable objects that can be copiously produced and studied, neutrons represent an attractive portal to a `dark' sector. This paper describes the capability, design, infrastructure, and potential of the HIBEAM program. This includes a dedicated beamline, neutron optical system, magnetic shielding and control, and detectors for neutrons and antineutrons.Comment: 41 pages, 12 figure

    The Development of the NNBAR Experiment

    Full text link
    The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity.Comment: 30 pages, 26 figures, accepted for publication in Journal of Instrumentation (JINST

    Structure of high-lying levels populated in the Y-96 -> Zr-96 beta decay

    Get PDF
    The nature of Jπ=1J^{\pi}=1^- levels of 96^{96}Zr below the β\beta-decay QβQ_{\beta} value of 96^{96}Y has been investigated in high-resolution γ\gamma-ray spectroscopy following the β\beta decay as well as in a campaign of inelastic photon scattering experiments. Branching ratios extracted from β\beta decay allow the absolute E1E1 excitation strength to be determined for levels populated in both reactions. The combined data represents a comprehensive approach to the wavefunction of 11^- levels below the QβQ_{\beta} value, which are investigated in the theoretical approach of the Quasiparticle Phonon Model. This study clarifies the nuclear structure properties associated with the enhanced population of high-lying levels in the 96^{96}Ygs_{gs} β\beta decay, one of the three most important contributors to the high-energy reactor antineutrino spectrum

    Firm spin and parity assignments for high-lying, low-spin levels in stable Si isotopes

    Get PDF
    A natural silicon target was investigated in a natSi(γ, γ′) photon-scattering experiment with fully linearly-polarised, quasi-monochromatic γ rays in the entrance channel. The mean photon energies used were ⟨ Eγ⟩ = 9.33, 9.77, 10.17, 10.55, 10.93, and 11.37 MeV, and the relative energy spread (full width at half maximum) of the incident beam was ΔEγ/ ⟨ Eγ⟩ ≈ 3.5–4 %. The observed angular distributions for the ground-state decay allow firm spin and parity assignments for several levels of the stable even-even silicon isotopes

    Electric and magnetic dipole strength in Zn 66

    Get PDF
    The dipole strength of the nuclide Zn66 was studied in photon-scattering experiments using bremsstrahlung produced with electron beams of energies of 7.5 and 13.4 MeV at the γELBE facility as well as using quasimonoenergetic and linearly polarized photon beams of 30 energies within the range of 4.3 to 9.9 MeV at the HIγS facility. A total of 128 J=1 states were identified, among them 9 with 1+ and 86 with 1- assignments. The quasicontinuum of unresolved transitions was included in the analysis of the spectra and the intensities of branching transitions were estimated on the basis of simulations of statistical γ-ray cascades. As a result, the photoabsorption cross section up to the neutron-separation energy was determined and compared with predictions of the statistical reaction model. The experimental M1 strengths from resolved 1+ states are compared with results of large-scale shell-model calculations

    Dipole response in 128,130Te^{128, 130}Te below the neutron threshold

    Get PDF
    Background: Numerous studies of the ground-state decay of the pygmy dipole resonance (PDR) have been carried out in the past. However, data on the decay of the PDR to low-lying excited states is still very scarce due to limitations of the sensitivity to weak branching transitions of experimental setups. Purpose: We present a detailed examination of the low-energy dipole response of Te-128 and Te-130 below their neutron separation thresholds of 8.8 and 8.5 MeV, respectively. Methods: Photonuclear reactions with the subsequent gamma-ray spectroscopy of the decay channel with continuous-energy bremsstrahlung at varying endpoint energies and linearly polarized quasimonochromatic gamma-ray beams with energies ranging from 2.7 to 8.9 MeV in steps of roughly 250 keV were used for probing the decay behavior of the low-energy dipole response in Te-128 and Te-130. In addition, ((gamma) over right arrow, gamma ' gamma '') reactions were used to study the population of low-lying states of Te-128. Results: Spin-parity quantum numbers and reduced transition probabilities are determined for individual photo-excited states. The analysis of average decay properties for nuclear levels in narrow excitation-energy bins enable the extraction of photoabsorption cross sections, average branching ratios to the 2(1)(+) state, and the distinction between E1 and M1 transitions to the ground state and to the 2(1)(+) state accounting for resolved and unresolved transitions. Conclusions: Above 5 MeV, the experimental data are in reasonable agreement to calculations within the quasiparticle phonon model. The major fraction of the ground-state decay channel is due to E1 transitions, while less than 5-10% stem from M1 transitions. Furthermore, first direct experimental evidence is provided that the population of the 2(1)(+) state of Te-128 via primary gamma-ray transitions from excited states in the PDR region from 5 to 9 MeV is dominated by E1 transitions of 1(-) states
    corecore