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2Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA

3Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
4GANIL, CEA/DRF-CNRS/IN2P3, F-14076 Caen, France

5Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
6Department of Physics, Duke University, Durham, North Carolina 27708, USA
7Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA

8European Spallation Source ERIC, 22484 Lund, Sweden
9Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

10Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
11School of Computing, Engineering, and Physical Sciences,

University of the West of Scotland, Paisley PA1 2BE, United Kingdom
12GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

13SUPA, Scottish Universities Physics Alliance, United Kingdom
(Dated: March 19, 2024)

Two complementary real-photon scattering experiments were conducted on the proton-magic
64Ni nucleus to study the dipole response up to its neutron-separation energy of Sn = 9.7MeV.
By combining both measurements, 87 E1 and 23 M1 transitions were identified above 4.3MeV.
The results of the observed M1 transitions were compared to shell-model calculations using two
different model spaces. It was found that the inclusion of excitations across the Z = 28 shell gap in
the calculations has a large impact. Furthermore, average cross sections for decays to the ground
state (elastic transitions) as well as to lower-lying excited states (inelastic decays) were determined.
The corresponding E1 channel was compared to calculations within the relativistic equation of
motion (REOM) framework. Whereas the calculations of highest possible complexity reproduce
the fragmentation and overall behavior of the E1 average elastic cross section well, the predicted
absolute cross sections are approximately twice as high as the experimental upper limits even though
the latter also include an estimate of the inelastic-decay channel.

I. INTRODUCTION

For decades, the investigation of the low-lying dipole
response of atomic nuclei has been a topic of great inter-
est. Especially, the accumulation of electric dipole (E1)
strength on top of the low-energy tail of the IsoVector Gi-
ant Dipole Resonance (IVGDR) [1], commonly denoted
as the Pygmy Dipole Resonance (PDR), has attracted a
lot of attention [2–4]. Nevertheless, some open questions
concerning this E1 excitation mode remain, including its
microscopic structure and its origin.
Systematic studies of the PDR are one approach for
achieving a better understanding. On the one hand, these
can be performed along isotopic and isotonic chains to in-
vestigate the influence of changes in, e.g., shell structures,
neutron excess, and deformation. Such studies were per-
formed, e.g., on the N = 82 isotonic chain [5–11] and
the Z = 50 isotopes [12–16] using real-photon scattering
experiments.
On the other hand, comparisons between the observed
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electric dipole response induced in various nuclear reac-
tions can be a testing ground for the excitation mecha-
nism (see, e.g., Refs. [14, 17, 18]). These studies become
difficult if a non-negligible contribution of M1 strength -
likely stemming from spin-flip resonances - is also located
close to the neutron-separation energy Sn. This is the
case, e.g., in nuclei close to the N = 28 or Z = 28 shells,
such as 54,56Fe [19, 20] and 58,60Ni [21–23]. In these nu-
clei, a considerable magnetic dipole (M1) contribution
was observed in (γ⃗,γ’) measurements with a polarized
photon beam. Thus, especially for these nuclei, a clear
distinction between E1 and M1 contributions is crucial.
Two complementary (γ, γ′) experiments on the proton-
magic Z = 28 nucleus 64Ni were performed to expand
the investigations of the dipole response in medium-mass
nuclei. Real-photon scattering measurements have al-
ready been performed on the two lightest stable, even-
even Ni isotopes 58,60Ni up to 10MeV [21–23] and the
N = 36 isotone 66Zn up to the neutron-separation en-
ergy Sn = 11.1MeV [24, 25]. The combination of com-
plementary (γ, γ′) experiments using bremsstrahlung as
well as polarized quasimonoenergetic photon beams from
Laser-Compton-Backscattering (LCB) enabled the clear
identification of the observed transitions and the deter-
mination of absolute physical quantities.
This article starts with a short introduction to real-
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photon scattering experiments and continues with de-
scriptions of the experiments and the analysis techniques.
Finally, the experimental results for the E1 channel
are compared to calculations in the equation of motion
(EOM) framework, and the M1 ground-state transitions
of resolved states are discussed with respect to shell-
model calculations.

II. NUCLEAR RESONANCE FLUORESCENCE
METHOD

The Nuclear Resonance Fluorescence (NRF) method
is based on real-photon scattering [26–28]. Real photons
predominantly induce dipole, and with a lower probabil-
ity, also quadrupole transitions from the ground state be-
cause they can only transfer small angular momenta. The
deexcitation of the photoexcited state can either happen
directly back to the ground state by the emission of a sin-
gle photon (elastic transition), or via intermediate states
and, subsequently, back to the ground state by emitting
more than one γ ray (inelastic transition). Because real
photons are used in the entrance and in the exit channel,
many quantities can be extracted in a model-independent
way. In this section only a short introduction to the for-
malism of NRF based on Refs.[26–28] is given. For fur-
ther information, the reader is referred to these review
articles.

II.1. State-to-state analysis

One measure for the probability that a certain transi-
tion occurs, which can directly be extracted from NRF
experiments, is the so-called energy-integrated cross sec-
tion IS . It is calculated by correcting the number of
recorded events at the respective γ-ray energy Eγ , i.e.,
the integrated peak area A in the deexcitation spectrum,
for the number of target nuclei NT , the number of inci-
dent photons per energy and area at the corresponding
excitation energy Nγ(Ex), the detection efficiency ϵ(Eγ),
and the angular distribution WΠL(θ, ϕ):

IS =
A

NT ·Nγ(Ex) · ϵ(Eγ) ·WΠL(θ, ϕ)
. (1)

The scattering angle θ is defined as the angle between
the incoming and the outgoing photons. The angle be-
tween the polarization plane, spanned by the direction
of the electric field of the incoming photons and its di-
rection of movement, and the direction of movement of
the outgoing γ rays is denoted as ϕ. If an unpolarized
photon source is utilized for the excitation, the angular
distribution W (θ) is independent of ϕ. Since the angular
distribution is dependent on the multipole order L and
the radiation character Π, i.e. electric (E) or magnetic
(M), the observed transition has to be characterized first.
To assign the multipolarity L, the ratio ω of the angular
distributions at two different scattering angles has to be

calculated according to

ω =
W (90◦)

W (127◦)
=

A(90◦)

A(127◦)
· ϵ(Eγ , 127

◦) · τ(127◦)
ϵ(Eγ , 90◦) · τ(90◦)

. (2)

For this purpose, θ = 90◦ and θ = 127◦ are best
suited since the difference between the ratios for pure
dipole, ω(L = 1) = 0.73, and quadrupole transitions,
ω(L = 2) = 2.28, is the largest. The theoretical ratios
are compared to the number of recorded events at the dif-
ferent scattering angles corrected for the corresponding
detection efficiencies ϵ(Eγ , θ) and the effective measuring
times τ (see Eq. (2)).
For the determination of the radiation character Π,
among others, a linearly-polarized γ-ray beam in the en-
trance channel can be used via the so-called analyzing
power Σhv. This is defined by the angular distributions
W (θ, ϕ) ([29]):

Σhv =
W (90◦, 0◦)−W (90◦, 90◦)

W (90◦, 0◦) +W (90◦, 90◦)
= q · ϵhv. (3)

The factor q corrects for the finite opening angles of the
detectors and the degree of polarization. The quantity
ϵhv denotes the experimental observable, i.e., the so-
called asymmetry between the horizontal and the ver-
tical detectors with respect to the polarization plane. It
is calculated by replacing the theoretical angular distri-
butions W (θ, ϕ) by the number of recorded counts at the
corresponding angles (θ, ϕ), corrected for ϵ(Eγ , θ) and τ
according to Eq. (2). The theoretically expected angular
distributions of an electric (magnetic) dipole transition
equal W (90◦, 0◦) = 0 (1.5) for a detector in the polar-
ization plane, and W (90◦, 90◦) = 1.5 (0) for a detector
positioned perpendicular to this plane. Therefore, the
analyzing power is Σhv = +1 for an M1 transition and
Σhv = −1 for an E1 transition. In the following, the
detector in the polarization plane is denoted as the M1
detector and the detector perpendicular to the polariza-
tion plane as the E1 detector, due to the angular distri-
butions.
The total decay width Γ equals the sum of all partial
decay widths Γf , with f being the populated state, in-
cluding the ground-state decay width Γ0. When the ratio
Γ/Γ0, which is the inverse ground-state decay branching
ratio, is known, the reduced transition strengths B(ΠL) ↓
for the deexcitation process can be deduced via

B(E1)↓ [e2fm2] = 8.29 · 10−4 · Γ

Γ0

IS [keVfm2]

Eγ [MeV]

B(M1)↓ [µ2
N] = 7.46 · 10−2 · Γ

Γ0

IS [keVfm2]

Eγ [MeV]
,

(4)

where it was assumed that Eγ = Ex. To calculate the
reduced transition strength for the excitation process,
Eq. (5) holds.

B(ΠL) ↑= 2J + 1

2J0 + 1
B(ΠL) ↓ . (5)

Here, J and J0 are the spin quantum numbers of the
excited and the ground state, respectively.
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II.2. Average quantities

Besides the investigation of individual transitions, av-
erage quantities can be determined by using, e.g., NRF
experiments with a quasimonoenergetic γ-ray beam.
In this way, elastic decays, which are too weak to appear
as distinct peaks in the deexcitation spectra, can be in-
cluded. For this purpose, the total number of recorded
NRF events A(tot) in the excitation-energy region δE is
investigated and corrected for the number of incoming
photons in the same energy range Nγ,tot. The elastic
cross section σγγ can be calculated using [30, 31]

σγγ =

∑
x IS,x→0

δE
≈ A(tot)

NT ·Nγ,tot · ϵ(Eγ)) ·WΠL(θ, ϕ)
.

(6)

Here, ϵ(Eγ)) is the average detection efficiency. The ex-
pression in Eq. (6) is exact if the energy distribution of
the photon beam is constant within the energy inter-
val δE or the strengths of the individual transitions are
equally distributed.
The observation of every inelastic transition for each in-
dividual state is experimentally challenging. Therefore,
the average inelastic cross section σγγ′ was defined for es-
timating the contribution of the inelastic-decay channel.
The analysis assumes that most of the intermediate states
k decay via the low-lying excited 2+ states. If these 2+

levels are not directly excited by the quasimonoenergetic
photons, the number of recorded ground-state decays of
these states A(2+) can be used to compute the average
inelastic cross section σγγ′ via [6]

σγγ′ =

∑
x IS,x→k

δE
≈ A(2+)

NT ·Nγ,tot · ϵ(E2+) ·WΠL(θ, ϕ)
.

(7)
For this purpose, the integration of the photon flux has
to be performed over the total excitation-energy region.
The calculation of the angular distribution WΠL(θ, ϕ)
is challenging. Therefore, it is often assumed to be
isotropic, because the lowest-lying states are fed by
higher-lying ones and the angular distributions are driven
towards isotropy.
The total, average photoabsorption cross section, which
is the sum of the elastic and the inelastic cross sections
σγ = σγγ + σγγ′ , includes the complete dipole response,
except for a small fraction of inelastic transitions bypass-
ing the low-lying excited 2+ states.

III. EXPERIMENTAL DETAILS

In order to study the photoresponse of 64Ni, two com-
plementary real-photon scattering experiments were per-
formed. First, an energetically-continuous and mainly
unpolarized bremsstrahlung beam, and second, a quasi-
monoenergetic and fully linearly-polarized photon beam
generated by Laser-Compton Backscattering (LCB) were
used as photon sources. The combination of both (γ, γ′)
experiments enables the differentiation between E1, M1,
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FIG. 1. Deexcitation spectra recorded by the detectors at
backward angles of the 7.3MeV (green) and the 9.4MeV
(black) bremsstrahlung measurements. The most prominent
transitions of the calibration target 11B are indicated.

and E2 transitions and the extraction of quantities such
as absolute, energy-integrated cross sections IS (see
Ref. [28] and references therein). In the following, ex-
perimental details of both complementary experiments
are provided.
Two bremsstrahlung measurements on 64Ni were con-
ducted at the γELBE facility at the Helmholtz-Zentrum
Dresden-Rossendorf (HZDR) [32] using maximal photon
energies of Emax = 7.3MeV for 120 hours (LE measure-
ment) and of Emax = 9.4MeV for 80 hours (HE measure-
ment). For the production of the bremsstrahlung beam
with lower (higher) maximal photon energy, an electron
beam with Ee− = 7.3MeV (Ee− = 9.4MeV) impinged on
a 7µm (12.5µm) niobium radiator. The energetically-
continuous bremsstrahlung beam was collimated (diam-
eter of 4 cm at the target position) and impinged on the
64Ni target disc with a diameter of 1.9 cm. It weighed
1456.56mg and had an isotopic enrichment of 92.1%.
In addition to the target of interest, a 11B target with
a similar diameter and a weight of 300mg (isotopic en-
richment 99.5%) served as calibration for the absolute
photon-flux determination. The emitted γ rays were de-
tected by four HPGe detectors, two at a scattering angle
of θ = 90◦ and two at θ = 127◦ relative to the incom-
ing photon beam. These were surrounded by lead shields
for passive, and by Compton-suppression BGO shields
for additional active background suppression. The dis-
tances between the detectors and the targets were 28 cm
for the 90◦ and 32 cm for the backward (127◦) detectors,
respectively. By taking into account the corresponding
opening angles of the detectors, the ratios of the angular
distributions (cf. Eq. (2)) equal ω = 0.74 and ω = 2.15
for dipole and quadrupole transitions, respectively [19].
Figure 1 illustrates the summed deexcitation spectra of
both detectors under backward angles for the low-energy
(LE) measurement in green and the high-energy (HE)
one in black. The neutron-separation energy of 64Ni is
Sn = 9.7MeV.
A complementary (γ⃗, γ′) experiment was performed on

64Ni at the High Intensity γ-ray Source (HIγS) located
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FIG. 2. The deexcitation spectra recorded by the M1 de-
tector (90◦, 0◦) and the E1 detector (90◦, 90◦) at HIγS at a
beam energy of 8.05MeV are shown as orange and blue his-
tograms, respectively. The photon-flux distribution in arbi-
trary units, which impinged on the target, is depicted in gray.
The summed deexcitation spectrum recorded by the θ = 127◦

detectors of the bremsstrahlung experiment is illustrated in
black.

at TUNL utilizing a linearly-polarized and quasimonoen-
ergetic γ-ray beam [33]. The photon beam passed a col-
limator with diameter of 1.9 cm before it impinged on
the target. Because of the beam divergence, the beam
had a diameter of approximately 2 cm at the target po-
sition. For the detection of the deexciting γ rays, the γ3

setup was used [34]. It consisted of four HPGe detectors
placed at (θ, ϕ) = (90◦, 90◦), (95◦, 180◦), (135◦, 45◦), and
(135◦, 315◦). Although two HPGe detectors were posi-
tioned at backward angles in the experiment, only one
of these was taken into account during the analysis due
to uncertainties concerning the precise positioning of the
other with respect to the target. Additionally, the γ3

setup includes four LaBr3 detectors which can be used
for γ − γ coincidence measurements. For this work, only
the HPGe detectors were used.
In total, the experiment was performed with 26 differ-
ent beam-energy settings between 4.33MeV and 10MeV
(4.33, 4.48, 4.63, 4.75, 4.93, 5.13, 5.43, 5.63, 5.86, 6.15,
6.38, 6.55, 6.75, 6.95, 7.15, 7.35, 7.55, 7.8, 8.05, 8.3, 8.55,
8.8, 9.05, 9.3, 9.6, and 10.0MeV) for approximately 3
to 4 hours each. The deexcitation spectra recorded by
the M1 (90◦, 0◦) and E1 (90◦, 90◦) detectors at a beam
energy of 8.05MeV are displayed as orange and blue his-
tograms, respectively, in Fig. 2. The excitation region is
indicated by the beam profile (gray) in arbitrary units. In
addition, the bremsstrahlung spectrum (black) recorded
by the backward detectors is illustrated for comparison.
For all measurements up to 9.05MeV, the same 64Ni tar-
get was used as for the bremsstrahlung experiment. For
the three settings with the highest energies (9.3, 9.6, and
10MeV), it was replaced by a 64Ni target with a diame-
ter of 8mm and a total weight of 4 g (isotopic enrichment
of 92.3%). Before each measurement, a HPGe detector
with a relative detection efficiency of 123%, denoted as
0◦ detector, was positioned in the beam with reduced
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intensity for measuring the incoming photon-flux distri-
bution.

IV. ANALYSIS AND RESULTS

In this section, the analysis procedures for obtaining
the quantities introduced in Sec. II are discussed, and
the results are presented.
For the determination of the full-energy-peak efficiencies
ϵ(Eγ), source measurements up to 3.5MeV were per-
formed, and geant4 simulations [35–37] were used for
the extrapolation to 10MeV [38, 39].

For the bremsstrahlung measurement, the photon-
flux distribution was determined by calculating the
bremsstrahlung cross section [40] using the process de-
scription by Roche et al. [41], corrected by the screening
of the nuclear Coulomb potential by the surrounding
electrons [42]. Afterwards, the products of photon flux
and efficiency Nγ(Ex) · ϵ(Eγ) of the HE (black) and LE
(green) measurements were individually scaled to known
transitions of the calibration standard 11B [43, 44].These
are illustrated by filled circles in Fig. 3 for the detectors
positioned at θ = 127◦.
For assigning multipolarities to the observed transitions,
the intensity ratios were calculated according to Eq. (2).
If the experimental intensity ratio is, within its 2σ range,
in agreement with only one of the theoretical ratios of
the angular distributions (ω = 0.74 for a dipole and
ω = 2.15 for a quadrupole transition), a firm assignment
was made. A tentative identification was proposed, if the
experimental ratio is in accordance with only one of the
theoretical values within its 3σ range. By assuming that
only elastic transitions were observed, spin quantum
numbers were associated to corresponding states due
to the 0+ ground state of 64Ni (see Table I). Up to a
γ-ray energy of 6.5MeV, the low-energy measurement
was used for multipolarity assignments and, for higher
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energies, the 9.4MeV one was preferred to minimize the
effect of feeding contributions from higher-lying states to
the levels of interest. Tentatively assigned spin quantum
numbers are given in parentheses in Table I.
Afterwards, the energy-integrated cross sections IS were
computed using Eq. (1). For all firmly and tentatively
identified dipole transitions, the energy-integrated cross
sections IS were calculated using the 127◦ detectors as
the corresponding statistical uncertainties are smaller
compared to those of the 90◦ detectors.
By using the HIγS data and applying Eq. (3), the
radiation character was deduced. The index h (v)
indicates that the detector positioned parallel (per-
pendicular) to the polarization plane, i.e., ϕ = 0◦

(ϕ = 90◦), was utilized. A firm (tentative) assignment
was made if the asymmetries ϵhv are in agreement with
only one of the simulated asymmetries within their 2σ
(3σ) ranges, which include the finite opening angles
of the detectors. For example, the simulation yielded
values of ϵhv = −0.92 for E1 and ϵhv = 0.90 for M1
transitions with the setup configuration used for the
beam energies between 5.86MeV and 9.05MeV. An
additional uncertainty of 10% was assumed for the
simulated asymmetries to take into account a possible
deviation of the absolute position of source and target.
This uncertainty was justified by the observation of a
discrepancy between the E1 and M1 detector (in total
10%), when calculating the absolute photon flux. In
the case of a tentative identification, the corresponding
quantum number is given in parentheses in Table I.
In instances, where the multipolarity is not firmly known
from the γELBE measurements and the asymmetry
ϵhv agrees with the simulated one for an E1 transition,
a multipole order of L = 1 was assumed. Indeed,
the asymmetries of an E1 and an M2 transition are
similar, but the probability to induce M2 transitions
is negligible. Because the asymmetries ϵhv of M1 and
E2 transitions are very similar as well, a complete
characterization of the transition was done using the
HIγS data in the case of an asymmetry value indicating
an M1 transition. For this purpose, the backward
(θ = 135◦) detector (indicated by the index b) of the
γ3 setup was taken into account and the asymmetries
ϵhb and ϵvb were calculated analogously to Eq. (3) [45].
For a firm (tentative) assignment, the experimental
values have to be in agreement within 2σ (3σ) with
both simulated asymmetries ϵhb and ϵvb. These have
uncertainties of 10% as well.

At HIγS, a HPGe detector was used to record the
shape of the incoming photon flux as stated in Sec. III.
The resulting spectra consist of background radiation,
γ rays directly stemming from the photon beam, and
the resulting detector response. For the deconvolution
of the latter two contributions, the unfolding code Horst
was utilized [46]. It includes a Monte-Carlo approach
for estimating the impact of uncertainties resulting from
the fitting procedure and statistical uncertainties in the
spectra as well as from the detector response (for details,
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see Ref. [46]). The detector response was obtained by
performing geant4 simulations using the toolkit utr
[39]. Figure 4 shows the result of the procedure for a
beam energy of Ebeam = 8.55MeV. The recorded and
one of the unfolded spectra are illustrated as gray and
black histograms, respectively. In addition, the photon
distribution was calculated by using the parameters of
the accelerator (red points) [47, 48]. A good agreement
of both distributions is observed. Experimental values
for the photon-current densities were determined using
known 64Ni transitions, analyzed in the bremsstrahlung
measurement, by rearranging Eq. (1), and adding a
correction for the different effective recording times of
the individual detectors. For this purpose, the transi-
tions detected by the HPGe detector at θ, ϕ = 135◦, 45◦

were used (light-blue points). Moreover, the dark blue
and orange data points were deduced from the detector
perpendicular to the polarization plane (E1 detector),
and the detector parallel to the polarization plane (M1
detector), respectively. These were not utilized for the
scaling of the photon-flux distribution.
In this experiment, a considerable deviation between the
photon-flux distributions impinging on the 0◦ detector
and on the 64Ni target was observed. One possible
explanation can be found in a non-optimal alignment
of the target and the beam. Since the diameters of the
target and the beam are very similar and the photon
beam has a spatial energy-distribution (high energies are
in the center of the beam and low energies at the edges),
a displacement would lead to less lower-energy photons
impinging on the target than on the 0◦ detector. Because
of this, it was assumed that the number of photons of
the recorded profile, which have energies higher than
the centroid energy of the deconvoluted spectrum, is the
same as the one incident on the 64Ni target. Therefore,
the high-energy sides of the deconvoluted 0◦ spectra
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were used to describe the high-energy sides of the
photon-flux distributions incident on the 64Ni target.
For determining the low-energy part, six beam-energy
settings, for which the complete shapes of the photon
fluxes impinging on the target are well described by
the 64Ni data points (indicated by arrows in Fig. 5),
were used to define energy dependencies of the widths
and centroid energies of the distributions. These were
applied to deduce the energy distributions of photons for
all beam-energy settings. This step was carried out for
all Monte-Carlo results obtained from the deconvolution
performed with the code Horst.
It has to be emphasized that this procedure is based
on the assumption that all beam energies were affected
in the same way by the possible displacement of the
target. However, because the target was moved between
the 5.63MeV and 5.86MeV measurements, and a 64Ni
target with a smaller diameter was used for beam
energies above 9.05MeV (for which the aforementioned
effect would be even higher), this procedure was only
used for all experimental runs between 5.86MeV and
9.05MeV. For beam energies below 5.86MeV and
above 9.05MeV, an insufficient number of transitions
of 64Ni was observed in the bremsstrahlung experiment
for determining the distributions applying the same
procedure as explained above. Therefore, only relative
quantities could be extracted for these beam energies.
After the determination of the photon-flux distributions,
these were scaled to the 64Ni values extracted for
isolated transitions. For this procedure, two approaches
are possible: (i) the scaling parameters are calculated
for each beam energy individually, (ii) a more global
method introduced in Ref. [49] is used. The result
of the independent scaling is shown by the dashed
curves in Fig. 5. For some beam-energy settings, only
very few data points are available which introduces
large uncertainties. Therefore, the global procedure
presented in Ref. [49] was applied in addition. Here,
advantage was taken of the fact that the low-energy
background generated by atomic processes in the target
is proportional to the total number of incident photons
on the target per beam energy. Hence, the low-energy
backgrounds for each detector and each beam energy
were simulated. By integrating the simulated and
experimental spectra in the same energy region (in this
case between 370 keV and 480 keV) and calculating the
ratios, the total numbers of photons impinging on the
target during the measurement were determined. In
this way and by using the same number of simulated
photons for all beam energies, the photon-flux distri-
butions were scaled relative to each other. At these
low energies, the full-energy-peak efficiencies of the
detectors at θ = 90◦ were significantly influenced by the
absorption of photons within the target before reaching
the detector which is dependent on the target’s position.
To minimize this effect, only the deexcitation spectra
of the backward detector were utilized for this purpose.
Then, all relatively-scaled photon distributions were
simultaneously scaled to all 64Ni values. A more detailed
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FIG. 5. The absolute photon-current densities are shown for
all beam energies between 5.86MeV and 9.05MeV. The ab-
solute photon-current densities were obtained by scaling, on
the one hand, each distribution to the corresponding 64Ni
data (dashed curve) and, on the other hand, all shapes to the
64Ni data of all beam-energy settings at once. The different
colors serve for the distinction between the different beam-
energy settings. See text for further details.

description of this method can be found in Ref. [49].
As can be seen in Fig. 5, the dashed and solid curves are
in good agreement for beam energies with data points
distributed over the total beam-energy profile. In these
cases, the individual scaling should also provide reliable
values with small uncertainties.

The energy-integrated cross sections IS of transitions
only observed in the HIγS experiment or which were
possibly affected by feeding or single-escape contribu-
tions in the bremsstrahlung experiment, were calculated
using the HIγS data and are identified as such in Table I.
For the computation of IS for an E1 (M1) transition,
the detector perpendicular (parallel) to the polarization
plane was used. Because the absolute photon-current
densities were determined using the backward detector,
correction factors had to be applied for the calculation
of absolute quantities using the E1 and M1 detectors.
These correction factors take into account uncertainties
associated with inaccuracies of the relative products of
detection efficiency and angular distribution with respect
to the backward detector. The absolute photon-current
densities determined using the backward detector were
scaled to transitions investigated with the corresponding
θ = 90◦ detector. For both detectors, the deviations
were approximately 5%. Only E1 (M1) transitions
were utilized for the scaling of the photon-current
densities of the detector perpendicular (parallel) to the
polarization plane, therefore, no correction factor could
be determined for the other radiation character, and it
was assumed to be negligible.

For the estimate of the uncertainty, a Monte-Carlo ap-
proach has been used. Each experimental quantity going
into the calculations of the energy-integrated cross sec-
tions according to Eq. (1), such as the peak area A of
the corresponding transition or the values entering the
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photon-flux determination, was varied within its statisti-
cal uncertainty for each iteration. The mean IS and its
standard deviation were determined from the resulting
probability distributions for the outcomes of the two flux-
scaling procedures separately. Subsequently, the Monte-
Carlo approach was once again applied to average both
results, yielding the final energy-integrated cross section.
The corresponding standard deviation represents the sta-
tistical uncertainty. The systematic uncertainty asso-
ciated with the difference between the two scaling ap-
proaches was extracted from the discrepancies between
the final IS values and the values obtained from the two
separate procedures. Furthermore, a systematic uncer-
tainty of 10% was applied, reflecting the determination
of the product of efficiency and photon flux at γELBE.
This uncertainty accounts for the accuracy of the fit func-
tions used to describe the 11B calibration points. Both
contributions were combined and are presented in Ta-
ble I as systematic uncertainties. When extracting the
energy-integrated cross sections and reduced transition
strengths from the γELBE measurement, only the lat-
ter is quoted as systematic uncertainty. To minimize
the statistical uncertainties, the peak area extracted from
the detector perpendicular (parallel) to the polarization
plane was used for an identified E1 (M1) transition. If a
radiation-character assignment was not possible and the
HIγS results had to be used, the energy-integrated cross
sections for both possibilities are given. Then, the first
value was extracted from the perpendicular ϕ = 90◦ de-
tector assuming an E1 transition and the second from the
parallel ϕ = 0◦ detector assuming an M1 transition. For
known E2 transitions, it was observed that feeding con-
tributions occur also in the LE bremsstrahlung measure-
ment up to approximately 4.5MeV and the HIγS data
only cover the energy range above 4.3MeV. Therefore,
only ground-state transitions above this energy are in-
cluded in Table I. It should be pointed out that below
5.86MeV no absolute photon-current densities could be
determined for the HIγS data. Hence, energy-integrated
cross sections and transition strengths may be contam-
inated by feeding and single-escape contributions below
this energy.

TABLE I: The table provides excitation energies Ex and as-
signed spin and parity quantum numbers Jπ. Tentatively as-
signed ones are given in parentheses. The energy-integrated
cross section IS and the corresponding product of reduced
transition strength B(ΠL) ↓ and Γ0/Γ are listed. When the
radiation character could not be determined, the reduced
transition strengths for both possibilities are given. The sta-
tistical and systematic uncertainties are quoted in the first
and second parentheses, respectively. If the parity quantum
number was assigned by comparing the energy-integrated
cross sections, it is indicated with an asterisk. Two IS values
are given if they were extracted from the HIγS data and the
radiation character is unknown. The first (second) value cor-
responds to an assumed E1 (M1) transition deduced from the
spectra of the E1 (M1) detector. A systematic uncertainty
of ±1 keV is assumed for the excitation energies.

Ex Jπ IS B(E1)↓ ·Γ0/Γ B(M1)↓ ·Γ0/Γ

[keV] [keV fm2] [10−5e2fm2] [10−3µ2
N]

4617 1+ 1.55(9)(16) 25.1(14)(25)

4765 1− 11.79(22)(118) 205(4)(20)

4995a 1+

5059 1 0.51(7)(5) 8.4(12)(8) 7.5(11)(8)

5130 1− 11.81(24)(118) 190(4)(19)

5419 1 0.80(9)(8) 12.1(14)(12) 10.9(12)(11)

5640 1(+) 0.38(7)(4) 5.0(10)(5)

5846 1− 2.90(17)(29) 41.0(24)(41)

5905 1− 2.56(17)(26) 35.8(24)(36)

5961 1− 6.06(25)(61) 84(3)(8)

6074 1− 4.3(12)(7)b 58(16)(9)

6166 1+ 1.25(17)(13) 15.1(20)(15)

6273 1+ 2.16(14)(22) 25.6(17)(26)

6382 1− 48.5(4)(49) 629(6)(63)

6402a 1+ 0.68(5)(10)b 7.9(6)(11)

6429 1+ 2.88(15)(29) 33.3(18)(33)

6455 1− 17.98(28)(180) 230(4)(23)

6537 1+ 0.83(12)(8) 9.5(14)(9)

6582 1− 1.70(14)(17) 21.4(18)(21)

6663 1− 5.16(20)(52) 64.0(25)(64)

6687a 1+, 2+ 0.57(7)(6)b 6.4(8)(6)

6765 1−∗ 4.75(20)(48) 58.1(25)(58)

6875 1− 19.3(3)(19) 232(4)(23)

7016 1− 8.25(25)(83) 97.3(30)(97)

7050 1 0.44(7)(6)b 5.2(9)(7)

0.23(5)(3)b 2.5(5)(3)

7058 1− 15.2(3)(15) 178(4)(18)

7086 1− 5.3(3)(11)b 62(4)(13)

7175 1− 1.12(18)(11) 12.9(21)(13)

7258 1− 18.0(8)(36)b 205(9)(42)

7272 1+ 0.76(7)(15)b 7.8(7)(16)

7328 1− 4.4(3)(4) 50(4)(5)

7387a 1, 2 0.53(14)(7)b 6.0(16)(8)

0.67(7)(8)b 6.7(7)(8)
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Table I - Continued.

Ex Jπ IS B(E1)↓ ·Γ0/Γ B(M1)↓ ·Γ0/Γ

[keV] [keV fm2] [10−5e2fm2] [10−3µ2
N]

7430 1− 5.71(27)(57) 64(3)(6)

7457 1 2.18(30)(22) 24.1(34)(24) 21.7(30)(22)

7466 1− 31.1(5)(31) 344(6)(34)

7499 1− 3.83(21)(47)b 42.2(23)(52)

7513 1− 11.1(3)(11) 122(4)(12)

7557 1− 2.60(24)(26) 28.5(26)(28)

7590 1− 7.8(4)(8) 85(4)(8)

7599 1− 42.1(6)(42) 459(7)(46)

7631 1− 10.3(3)(11)b 112(3)(12)

7648 1− 10.1(3)(11)b 109(3)(12)

7687a 1, 2 1.91(18)(21)b 20.6(19)(22)

0.78(9)(9)b 7.6(8)(8)

7717 1+∗ 11.5(4)(11) 111(4)(11)

7743 1− 11.5(4)(12) 123(4)(12)

7760 1+ 2.50(26)(25) 24.0(25)(24)

7824 1− 1.92(17)(24)b 20.3(18)(25)

7841 1− 17.4(4)(17) 183(5)(18)

7866 1− 3.54(30)(35) 37(3)(4)

7878 1 0.89(13)(11)b 9.3(14)(11)

1.12(12)(13)b 10.6(11)(12)

7887 1− 6.37(25)(77)b 66.8(26)(81)

7907 1− 1.24(27)(12) 13.0(28)(13)

7918 1 0.77(12)(9)b 8.1(12)(10)

1.60(13)(19)b 15.1(12)(18)

7966 1− 3.5(4)(3) 36(4)(4)

7990 1+ 11.2(4)(11) 105(4)(10)

8013 1− 4.4(3)(4) 46(3)(5)

8043 1 3.6(6)(7)b 37(6)(7)

1.59(18)(27)b 14.7(17)(25)

8052 1− 47.1(11)(78)b 484(11)(80)

8079 1+ 2.67(29)(27) 24.6(27)(25)

8120 1− 5.2(3)(5) 53(4)(5)

8144 1− 20.0(5)(33)b 203(5)(34)

8163 1+ 8.4(4)(8) 77(4)(8)

8216 1− 12.4(4)(12) 124(4)(12)

8239 1− 8.4(5)(11)b 84(5)(12)

8260 1− 7.9(4)(8) 79(4)(8)

8278 1 4.2(3)(4) 42(3)(4) 37.7(29)(38)

8333 1− 23.9(11)(32)b 238(10)(32)

8342 1− 12.5(10)(17)b 124(10)(17)

8360a 1+ 0.62(12)(10)b 5.5(11)(9)

8376 1+ 3.6(4)(4) 32(4)(3)

8387 1− 11.3(5)(11) 112(5)(11)

8401 1− 16.5(5)(22)b 163(5)(22)

8421 1+ 6.0(5)(6) 53(4)(5)

8431 1+ 4.2(5)(4) 37(4)(4)

8467 1− 10.6(5)(11) 104(5)(10)

Table I - Continued.

Ex Jπ IS B(E1)↓ ·Γ0/Γ B(M1)↓ ·Γ0/Γ

[keV] [keV fm2] [10−5e2fm2] [10−3µ2
N]

8495a 1− 2.09(31)(26)b 20.4(30)(25)

8520a 1− 0.89(22)(13)b 8.6(22)(13)

8536 1(−) 1.40(20)(17)b 13.6(20)(16)

8564 1+∗ 9.7(5)(10) 84(4)(8)

8586a 1+ 1.26(11)(16)b 10.9(10)(14)

8609 1− 11.6(6)(12) 111(6)(11)

8619 1− 17.3(7)(17) 166(6)(17)

8657 1− 15.2(5)(18)b 145(5)(17)

8666 1− 6.10(30)(74)b 58.3(28)(70)

8680 1+ 0.78(11)(9)b 6.7(9)(8)

8687 1− 5.8(8)(6) 55(8)(5)

8710 1− 4.2(4)(4) 39(4)(4)

8748 1− 5.6(5)(6) 53(4)(5)

8778a 1− 1.08(25)(16)b 10.2(24)(15)

8786a (1−) 1.27(25)(17)b 12.0(24)(16)

8818 1− 8.4(7)(8) 79(7)(8)

8826 1− 7.4(4)(9)b 69(3)(9)

8844 1−∗ 3.3(5)(3) 31(5)(3)

8854 1− 51.2(12)(51) 478(11)(48)

8865 1 3.89(25)(50)b 36.3(24)(46)

1.28(13)(17)b 10.7(11)(42)

8883 1− 4.4(5)(4) 41(5)(4)

8893 1− 8.5(6)(8) 79(6)(8)

8903 1− 6.8(6)(7) 63(6)(6)

8913a 1+ 0.93(15)(12)b 7.8(13)(10)

8921a 1− 2.26(24)(31)b 21.0(22)(29)

8934a 1− 1.60(20)(20)b 14.8(19)(19)

8959 1 2.35(45)(24) 21.7(41)(22) 19.6(37)(20)

8986 1− 23.4(22)(23) 216(20)(22)

8993 1(−) 8.9(19)(9) 82(18)(8)

9000 1− 17.3(13)(17) 159(12)(16)

9009 1 2.52(72)(25) 23.2(66)(23) 20.8(59)(21)

9019 1− 9.9(7)(10) 91(7)(9)

9034a 1, 2 1.21(20)(15)b 11.1(19)(14)

1.04(13)(11)b 8.6(10)(9)

9050 1− 19.1(9)(19) 175(8)(17)

9064 1− 2.84(54)(28) 25.9(49)(26)

9076a (1+) 0.57(10)(6)b 4.6(8)(5)

9091a (1−) 1.78(17)(19)b 16.2(16)(18)

9109a 1+ 1.07(13)(11)b 8.8(11)(9)

9123a 1− 0.98(17)(11)b 8.9(15)(10)

9132a 1, 2 1.13(18)(13)b 10.3(16)(12)

0.73(12)(8)b 6.0(10)(6)

9167 1− 9.3(8)(9)b 84(7)(8)

9180 1+ 2.55(64)(25) 20.7(52)(21)

9192 1− 19.0(11)(19) 171(10)(17)

9212 1− 8.9(8)(9) 80(7)(8)
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Table I - Continued.

Ex Jπ IS B(E1)↓ ·Γ0/Γ B(M1)↓ ·Γ0/Γ

[keV] [keV fm2] [10−5e2fm2] [10−3µ2
N]

9234 1− 8.8(8)(9) 79(7)(8)

9265 1(−) 3.0(6)(3) 27.1(56)(27)

9295 1− 9.8(9)(10) 87(8)(9)

9331a (1−)

9339a 1−

9348a 1+, 2+

9356a 1−

9363a 1, 2

9369 1− 6.0(10)(6) 53(9)(5)

9402a 1, 2

9411a 1−

9426a 1, 2

9463a 1−

9474a 1−

9490a 1−

9502a 1, 2

9513a 1−

9522a 1−

9539a 1+, 2+

9548a 1, 2

9558a 1−

9575a 1−

9600a (1−)

9635a (1−)

9641a 1, 2

9651a 1, 2

a only observed at HIγS
b determined from HIγS data

In four cases, the radiation character was assigned by
comparing the two possible IS values determined from
the HIγS data to the γELBE result. The corresponding
energy-integrated cross sections are presented in Ta-
ble II. These spin-parity quantum numbers are indicated
by an asterisk in Table I. Feeding contributions to these
states, which would affect the energy-integrated cross
sections extracted from the bremsstrahlung analysis,
were excluded due to the comparison of the HE and LE
measurements at γELBE.

In all, 87 1− states and 23 1+ states were firmly
identified between 4.3MeV and Sn by combining the
HIγS and γELBE results. Eight states were tentatively
identified as 1− states and two as 1+ ones. For eleven
states, J = 1 was determined.

Besides the investigation of individual transitions,
average elastic cross sections σγγ were determined
for all beam-energy settings with known absolute
photon-current densities from the HIγS data, i.e., for
all beam energies between 5.86 and 9.05MeV. For this

TABLE II. Energy-integrated cross sections determined from
the bremsstrahlung (γELBE) and the HIγS experiments using
the E1 and the M1 detectors are given for transitions with
unknown radiation character due to the asymmetry ϵhv. In
the first parenthesis, the statistical uncertainty, and in the
second, the systematical uncertainty of the photon flux at
HIγS are given. The uncertainty of the photon flux at γELBE
is not included.

Ex [keV]
IS [keV fm2]

γELBE HIγS E1 det. HIγS M1 det.

6765 4.75(20) 4.32(19)(12) 1.06(8)(3)
7717 11.5(4) 3.16(31)(7) 10.73(36)(19)
8564 9.7(5) 3.37(25)(7) 8.71(26)(17)
8844 3.3(5) 3.43(31)(11) 1.86(15)(5)

purpose, the recorded deexcitation spectra were decon-
voluted using the code Horst. Afterwards, the absolute
photon-current density and the deconvoluted spectra
were integrated in the same energy range δE to apply
Eq. (6). Because of the non-constant photon-current
density and individual, very strong transitions of 64Ni,
the width of the integration interval was chosen to
be δE = 50 keV. No E2 transition was identified in
the state-to-state analysis above 5MeV. Hence, only
the E1 and M1 channels of the elastic cross section
were disentangled following the approach described in
Ref. [45]. Because the recorded deexcitation spectra
of both θ = 90◦ detectors consist of superpositions
of E1 and M1 transitions, two linear equations with
two unknown parameters, σγγ(M1) and σγγ(E1), were
set up according to Eq. (6). As described above, the
determination of the absolute photon-current densities
using the E1 and M1 detectors showed 5% discrepancies
with respect to the backward detector. This corresponds
to uncertainties of the product of angular distribution
and efficiency. As stated above, these deviations were
quantified for E1 (M1) transitions for the E1 (M1)
detector, but no correction could be determined for the
other radiation character. Therefore, it was only applied
to the corresponding term in the individual linear
equation. However, for the other radiation character,
i.e., the M1 (E1) channel recorded by the detector
perpendicular (parallel) to the polarization plane, no
correction factor could be determined and applied.
The linear equations were solved for all combinations
of photon flux and peak area extracted in the previous
steps. For the determination of elastic cross sections and
their corresponding statistical and systematic uncertain-
ties, the same procedure used for the energy-integrated
cross section was applied.
Because of some rest gas present in the beam line
during the measurements at Ebeam = 5.86MeV and
Ebeam = 6.15MeV, the deconvoluted deexcitation
spectra contained, even after the deconvolution, events
not resulting from NRF reactions in the target. Hence,
these two energy runs were neglected in this part of the
analysis.
In Panel (a) of Fig. 6, the M1 and the E1 average elastic



10

 0

 5

 10

 7000  8000  9000

(a)

σ γ
γ 

[m
b]

energy [keV]

E1
M1
stat. uncertainty
sys. uncertainty

 7000  8000  9000  10000
 0

 0.25

 0.5

 0.75

 1

 1.25

(b)

σ γ
γ,
E
1/
σ γ

γ,
E
1+

M
1

energy [keV]

6.38 - 9.05 MeV
9.3 - 9.6 MeV

FIG. 6. In Panel (a), the moving average over a range of
200 keV of the elastic cross sections of the E1 and M1 chan-
nels deduced in 50 keV steps is shown in blue and orange,
respectively. The statistical uncertainties (shaded areas) are
small. The systematic uncertainties (resulting from the pho-
ton fluxes of the γELBE and HIγS measurements, see text)
are depicted as crosshatched areas. Panel (b) illustrates the
fraction of the E1 contribution with respect to the total cross
section. This ratio was not only calculated for beam energies
between 6.38 and 9.05MeV (black), but also for the beam-
energy settings of 9.3 and 9.6MeV for which absolute mea-
surements were not possible (purple).

cross sections in terms of moving averages over a range
of 200 keV are displayed in orange and blue, respectively.
Furthermore, the fraction of the E1 contribution nor-
malized to the sum of E1 and M1 elastic cross sections
is given in Panel (b) of Fig. 6. The calculation of this
ratio has the advantage that systematic uncertainties
are eliminated. Additionally, it could also be determined
for the beam-energy settings of 9.3 and 9.6MeV where
the photon-current densities are unknown (purple data
in Fig 6). The 10MeV deexcitation spectra recorded
by the HPGe detectors do not show any strength and,
therefore, no results are given. It can be observed that
the M1 channel is weak compared to the E1 channel
for all energies, except between 7.5 and 8.5MeV. In this
energy region, the M1 channel contributes more to the
average elastic cross section and the strengths of both
channels are partly comparable. Above 8.5MeV, the
M1 contribution drops again. This is indicated in Panel
(b) of Fig. 6 as well.

To determine the average inelastic cross section σγγ′ ,
the ground-state transitions of the 2+1 state at 1346 keV,
the 2+ levels at 3154 and 3275 keV, and of a state at
2972 keV, which spin-parity quantum number is given as
(1, 2+), were investigated [50]. By applying Eq. (7), ex-
tracting the peak areas A(2+) of the ground-state decays
of the low-lying 2+ states from the deexcitation spec-
tra of each HPGe detector individually, and assuming
WΠL(θ, ϕ) ≈ 1, the average inelastic cross sections σγγ′

were calculated. The investigation using all HPGe de-
tectors accounts for systematic uncertainties introduced
by, e.g., detection efficiencies at low γ-ray energies or not
completely-isotropic angular distributions. For the un-

certainty estimate, the Monte-Carlo approach was used
by combining each extracted photon-current density (as
explained above) with the peak areas A(2+), which were
varied within their statistical uncertainties following a
Gaussian distribution. The determination of uncertain-
ties was performed in analogy to the procedure described
before for the elastic cross section. Additionally, the con-
tribution from the extraction of the inelastic cross section
using the different HPGe detectors was included.
The results serve only as estimate of the average inelas-
tic cross sections since the non-constant photon distri-
bution could not be taken into account. Therefore, the
photon-current densities were integrated over the total
excitation-energy region. The sum of the average inelas-
tic cross sections corresponding to all observed ground-
state decays of the low-lying 2+ states are presented in
dark green in Fig. 7.
In addition, Fig. 7 illustrates the comparison of the aver-
age elastic cross sections corresponding to the E1 chan-
nel, extracted in δE = 50 keV steps in terms of the mov-
ing average over a range of 200 keV (blue data), and from
the investigation of the complete excitation-energy re-
gion at once δE = Ebeam,total (black squares). The gen-
eral trends of the average elastic cross sections σγγ,E1

determined using both methods are in good agreement
although the fine structure of the strength is, of course,
better described by the continuous analysis in 50 keV
steps. Because of this agreement, it was concluded that
the average inelastic cross section can be estimated by
using the determined σγγ′ values: In Fig. 7, the sums of
the average elastic E1 cross sections σγγ,E1 and the aver-
age inelastic cross sections σγγ′ are illustrated in brown,
i.e., the total photoabsorption cross section σγ,E1 is dis-
played. Because σγγ′ includes the E1 and M1 channels,
the depicted photoabsorption cross sections σγ,E1 pro-
vide only an upper limit. Nevertheless, the importance
of including the inelastic-decay channel at high excita-
tion energies can be seen.

V. DISCUSSION

In this section, the experimental results are compared
to theory. Here, the E1 response contained in elastic
transitions is compared to calculations performed within
the relativistic equation of motion (REOM) framework.
This is part of the relativistic nuclear field theory
(RNFT) that represents the most optimal balance of
fundamentality, predictive power, and feasibility for nu-
clear structure calculations. The apparent advantages of
RNFT are its covariance, connection to particle physics,
non-perturbative character, and transparent treatment of
sub-leading contributions to the nucleon-nucleon forces in
complex nuclei. The only input to RNFT is the meson
masses and coupling constants, slightly renormalized in
the framework of the covariant density functional theory,
compared to their vacuum values and universal across
the nuclear chart. Up to now, the REOM has not been
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uncertainties are included. For details, see text.

adopted for calculations of nuclear response of unnatural
parity in the neutral sector. Therefore, shell-model calcu-
lations were performed to interpret theM1 strength of in-
dividual transitions of 64Ni observed in the experimental
data. The shell-model approach is capable of providing
accurate treatment of complex multiparticle-multihole
configurations in sufficiently small model spaces, that is,
the case of the M1 response. However, it is more difficult
to extend to model spaces covering two major shells re-
quired for the E1 excitations in the energy interval under
study.
The most important details concerning both calculations
are given below.

V.1. Relativistic equation of motion approach

The most convenient tool to quantify the nuclear
strength functions over a wide range of energies is re-
sponse theory. In major textbooks and many practical
applications, response theory is confined by the random
phase approximation (RPA) or its superfluid variant, the
quasiparticle RPA (QRPA). In the context of the most
fundamental ab initio equation of motion (EOM) frame-
work [51, 52], QRPA neglects completely the dynamical
interaction kernel, while in the diagrammatic formula-
tion, (Q)RPA is associated with a one-loop approxima-
tion. In Rowe’s EOM [53], (Q)RPA is represented by the
simplest one-particle-one-hole (two-quasiparticle) 1p1h
(2q) excitation operator generating the excited states by
its action on a non-correlated ground state, while more
accurate solutions require higher-complexity (npnh) cor-
relations in both the excited and ground states of the
system.

(Q)RPA is known to reproduce some basic features of
giant resonances and soft modes. However, a detailed and
accurate description of nuclear spectra requires a much
more advanced theory. All the approximations beyond
(Q)RPA were shown to be derivable from the dynamical
kernel of the ab initio EOM for the two-fermion response
function [54, 55]. In particular, the leading approxima-
tion beyond (Q)RPA is the quasiparticle-vibration cou-
pling (qPVC) in the minimal coupling scheme including
2q⊗phonon configurations in the two-fermion in-medium
propagator, where the phonon represents correlated 2q
pairs. Realistic implementations of this approach may
employ effective interactions, which yield quite reason-
able phonons already within (Q)RPA, combined with
subtraction restoring the self-consistency of the ab ini-
tio framework [56]. The minimal qPVC extension of
(Q)RPA by the 2q ⊗ phonon configurations is often in-
sufficient, and higher configuration complexity may be
needed to describe fine details of nuclear spectra. The
two-fermionic cluster decomposition of the fully corre-
lated dynamical kernel of the response function suggests
that the next-level complexity non-perturbative approxi-
mation is the 2q⊗2phonon or correlated six-quasiparticle
configurations in the intermediate propagators.

Based on the recent developments of Refs. [54, 55],
calculations for the electromagnetic dipole response of
64Ni were performed with the NL3* meson-exchange in-
teraction [57]. This parametrization (an upgrade of NL3)
demonstrates a reliable performance in the description
of nuclear masses and radii [58]. Furthermore, the NL3*
has the advantage of its ansatz being separable in the
momentum representation, which allows for an econom-
ical and efficient implementation for calculations of the
nuclear response.
The calculations were conducted in the three many-
body approximations of growing complexity: relativis-
tic QRPA (RQRPA), relativistic 2q ⊗ phonon EOM
(REOM2) and relativistic 2q⊗2phonon EOM (REOM3).
The upper index in REOMn is adopted as a universal
complexity index, marking the maximal number of cor-
related or non-correlated particle-hole configurations in
the intermediate propagators: 2p2h for REOM2 and 3p3h
for REOM3. Natural-parity phonons up to 20 MeV with
J = [1, 6] were used in both REOM2 and REOM3, and
the intermediate 2q⊗phonon propagators with both par-
ities and J = [0, 6] were included in the model space of
REOM3. The 2q configurations were included up to 100
MeV, while the 2q ⊗ phonon ones were accommodated
up to 30 MeV. Including 2q⊗ 2phonon configurations up
to high energy is technically challenging, and the energy
cutoff of 25 MeV was the maximum that is feasible on
the supercomputer cluster at Western Michigan Univer-
sity. Further details are similar to those of calculations
presented in Ref. [59].

REOM2, previously dubbed as relativistic (quasipar-
ticle) time blocking approximation (R(Q)TBA), brings
the major refinement and significant improvement of the
description as compared to RQRPA, as displayed in Pan-
els (a) and (b) of Fig. 8. However, it can be observed
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FIG. 8. Top: The E1 photoabsorption cross section σγ,E1

of 64Ni in the three many-body approximations of growing
complexity: relativistic QRPA (RQRPA) (gray), relativistic
2q ⊗ phonon EOM (REOM2) (dashed black), and relativis-
tic 2q ⊗ 2phonon EOM (REOM3) (solid black). The results
up to 17MeV were obtained with the ∆ = 200 keV smearing
parameter (the imaginary part of the energy argument and
corresponding to half the width of the individual peaks) in
comparison with the experimental NRF elastic cross section
σγγ,E1 (blue). These data are depicted as moving averages
over a range of 200 keV. The statistical (systematic) uncer-
tainties are shown as blue shaded (light-blue crosshatched)
areas. Furthermore, the upper limits for the E1 photoab-
sorption cross sections σγ,E1, which also include the average
inelastic cross sections, and the statistical uncertainties deter-
mined in the NRF experiment are depicted as dark-red points.
The corresponding systematic uncertainties are illustrated as
light-red error bars. Additionally, the total photoabsorption
cross section σγ extracted from a (γ, n) measurement by Ut-
sonomiya et al. (orange triangles) [60] are given. Panel (b):
the same data as in (a) but just up to 9500 keV to emphasize
the energy region associated with the PDR. Panel (c): for a
better comparison of the fine structure observed in the NRF
experiment with the REOM3 calculation, the experimental
results extracted in 50 keV steps are illustrated together with
the REOM3 results obtained with a smearing parameter of
∆ = 50 keV.

that more complex configurations than 2q ⊗ phonon are
needed for a more accurate description of the experimen-
tal data. By adding more complex 2q⊗2phonon configu-
rations in REOM3 the strength distribution is still visibly
changed. It can be seen that a significant portion of the
strength moves toward lower energies. In particular, the
pygmy-resonance domain below 10MeV manifests con-
siderable structural differences between the REOM2 and
REOM3 approaches (cf. Panel (b) of Fig. 8). On the
theory side, the model-independent framework [54, 61]
indicates that, in principle, configurations up to NpNh

complexity have to be included to solve the many-body
problem of N particles exactly. Therefore, any effort to-
ward high-complexity configurations should improve the
description of a many-body system. However, a com-
parison of the RQRPA, REOM2, and REOM3 numerical
results indicates that the quantitative importance of com-
plex configurations decreases with complexity. Hence, it
can be assumed that reaching the desired accuracy is
feasible within the model spaces of maximal complexity
not significantly exceeding 2q ⊗ 2phonon in the coupling
regimes of nuclear structure.
The theoretical results given in Fig. 8 represent the total
E1 photoabsorption cross sections σγ,E1. The average E1
elastic cross sections σγγ,E1 deduced from the NRF mea-
surements are displayed in blue. The experimental upper
limits of the E1 photoabsorption cross section shown in
dark red include the inelastic decay channel for which no
distinction between E1 and M1 transitions was possible,
as described in the previous section. Hence, these results
represent upper limits with respect to the E1 channel.
In the case of the photoabsorption cross section deduced
from the (γ, n) experiment (orange), also the M1 chan-
nel is included, but it was theoretically shown in Ref. [60]
that this contribution is negligible above approximately
10.5MeV. Because no absolute cross sections could be
determined between 9.3MeV and Sn in this NRF mea-
surement, a conclusive comparison of the NRF and the
(γ, n) data is not possible. However, there are indica-
tions of additional E1 strength and structures on top of
the low-energy tail of the IVGDR in the PDR region.
Whereas the RQRPA and the REOM2 results do not
show strength distributions comparable to the NRF
data, the REOM3 results reproduce the experimentally-
determined enhancement of the cross section at 7.5MeV.
Furthermore, when comparing the REOM3 cross sections
obtained with a 50 keV smearing parameter and the aver-
age elastic cross sections deduced in 50 keV steps (Panel
(c)), a good agreement in the strength fragmentation can
be observed up to 8.5MeV. At higher energies, the ener-
gies of the enhancements cannot exactly be reproduced
but similar structures can be identified. Here, the in-
elastic contribution is not included since it could not be
extracted in 50 keV steps and, therefore, no fine structure
could be investigated.
The agreement of REOM3 with experimental data, al-
though improved compared to the less advanced ap-
proaches, is still imperfect. Especially, the summed cross
section between 6.0 and 9.3MeV is almost two times
higher than the experimentally extracted upper limit of
the total photoabsorption cross section (dark-red data
points) as illustrated in Fig. 9. This indicates that some
mechanisms of the strength formation are still to be in-
cluded to achieve spectroscopic accuracy, and that the
interaction can be of better quality. In the paradigm of
a parameter-free many-body theory, the only parameters
are those characterizing the local interaction between two
nucleons (effective or bare), while all the many-body cor-
relations are computed without changing these parame-
ters or introducing new ones.
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light-blue crosshatched areas) with the corresponding y axis
on the right side.

Within this paradigm, a complete response theory for
atomic nuclei should take into account the continuum,
including the multiparticle escape, a more complete set of
phonons (including those of unnatural parity and isospin-
flip), complex ground-state correlations, and, in princi-
ple, even higher-complexity configurations, which are ex-
pected to further affect the strength functions and po-
tentially improve the description of the fine structure.
These factors may be individually less significant than
the included correlations but altogether they can make
a sizable contribution. These effects will be addressed in
future work.
For a better comparison, the contribution of the inelastic-
decay channel in the experiment has to be further in-
vestigated with respect to the contributions of E1 and
M1 transitions. Furthermore, the deduced average in-
elastic cross sections serve only as an estimate of the
inelastic-decay channel, since the non-constant photon-
current densities were neglected in the analysis. By ana-
lyzing γ−γ coincidence data, a smaller energy region δE
can be investigated similar to that used for the average
elastic cross section.

V.2. Shell-model calculations

Shell-model calculations for 64Ni were carried out using
the code NuShellX@MSU [62] with two different model
spaces.
First, the fp model space with the GX1A Hamiltonian
[63, 64] was used as previously for the lighter nuclide 54Fe

[19]. The model space included the proton and neutron
orbitals (1f7/2, 2p3/2, 1f5/2, 2p1/2) without limits in occu-

pation numbers. The calculated 2+1 state has an excita-
tion energy of Ex = 1.268MeV and a transition strength
to the ground state of B(E2, 2+1 → 0+1 ) = 139 e2fm4. The
corresponding experimental values are Ex = 1.346 MeV
and B(E2, 2+1 → 0+1 ) = 119(4) e2fm4 [50].
As an alternative, the ca48pn model space with the
CA48MH1 Hamiltonian [65, 66] was applied, which
had also been used for the investigation of 1+ states
in the isotone 66Zn [24] and in 60,64,68Fe [67]. The

model space included the π(1f
(8−f)
7/2 , 1ff

5/2, 2p
f
3/2, 2p

p1
1/2)

proton orbitals with f = 0 to 4, p1 = 0 to 2, and

the ν(1ff5
5/2, 2p

p3
3/2, 2p

p1
1/2, 1g

g9
9/2) neutron orbitals, where

f5 and p3 can have values from zero to the respective
maximum, and g9 = 0 to 2. The 2+1 state was calcu-
lated at Ex = 0.750MeV with a transition strength of
B(E2, 2+1 → 0+1 ) = 423 e2fm4 using standard effective
charges of eπ = 1.5e and eν = 0.5e. It is noted that the
Hamiltonians were not specifically adjusted to nuclides
around 64Ni. The calculations for Jπ = 1+ states were
performed for the lowest 100 states. Reduced transition
strengths B(M1, 1+ → 0+1 ) were calculated using effec-
tive g factors of geffs = 0.74gfrees [68].
The experimentally deduced products of B(M1, 1+ →
0+1 ) and the ground-state decay branching ratio Γ0/Γ
given in Table I for all firm and possible 1+ states
are compared with the calculated ones in Fig. 10.
The first 1+ state in the shell-model calculation us-
ing the CA48MH1 (GX1A) Hamiltonian appears at
2.941 (2.692MeV), whereas the first experimental state
with a firm 1+ assignment is located at 4.617(1)MeV.
However, excitation energies below 4.33MeV were not
covered by the HIγS measurement. Therefore, the
lowest-lying calculated 1+ states within the shell model
are not given in the figure.
Around 8MeV, an accumulation of strong M1 transi-
tions and a number of transitions with smaller B(M1)
values above 8.5 MeV are observed in the experiment
(upper part of Fig. 10). This resembles the distribution
calculated with the GX1A Hamiltonian (black bars in
the lower panel). The shell-model results obtained with
the CA48MH1 Hamiltonian show prominent strengths
between 7 and 7.5 MeV and also a distribution of smaller
strengths at higher energy (red bars in the lower panel).
This behavior is also indicated in the running sums cal-
culated using all values above 4MeV determined theoret-
ically and experimentally (cf. Fig. 11). The experimen-
tal running sum includes all firmly assigned as well as
all possible M1 transitions observed in the NRF experi-
ments. All the curves indicate a step-like behavior caused
by strong peaks in the B(M1) distributions. Whereas
the steepest step occurs between 7.5 and 8MeV in the
experimental (orange) and the GX1A (black) data, the
CA48MH1 results (red) contain two steep steps at 7 and
7.5MeV. Because of these two steps, the running sums in
CA48MH1 exceed the experimental ones as well as those
calculated in GX1A above 7MeV, but approach the ex-
perimental values again at 8.5MeV. Additionally, it is
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B(M1, 1+ → 0+1 ) of the calculated
values using the CA48MH1 and GX1A Hamiltonian are shown
as red and black squares, respectively. The experimentally ex-
tracted products of B(M1, 1+ → 0+1 ) and ground-state decay
branching ratio Γ0/Γ (right y axis) of 64Ni are given by or-
ange circles with the corresponding statistical uncertainties.
The systematic uncertainties are depicted in gray.

indicated that the strength in the GX1A shell-model cal-
culations is more smoothly distributed compared to the
experimental strength between approximately 8.5MeV
and 9.5MeV. The differences between the distributions
of M1 strength obtained with the two model spaces may
be traced back to differences in the ingredients, such as
single-particle energies and two-body matrix elements.
The calculation using GX1A without limitations repro-
duces the energy of the 2+1 state and the B(E2, 2+1 → 0+1 )
value better than the one using CA48MH1, which may

indicate a better adjustment of model space and Hamil-
tonian to the present nuclide. In both model spaces, the
excitation of protons from the 1f7/2 orbital to the fp
orbitals across the Z = 28 gap plays an important role
for the generation of M1 strength. In GX1A, also the
neutron 1f7/2 orbital is included while CA48MH1 starts
above N = 28, but includes the 1g9/2 orbital in addi-
tion. Both these orbitals give minor contributions to the
respective calculated states, but may nevertheless influ-
ence the results in different ways.
It has to be kept in mind that the experimental data are
given as the product of the reduced transition strength
and the ground-state decay branching ratio. In this
sense, the pictured experimental values serve only as up-
per limit. On the other hand, only resolved transitions
are contained in the experimental data.
It can be concluded that the experimental summed
strength of ΣB(M1, 1+ → 0+1 ) = 0.949(16)(102)µ2

N
between 4.3 and 9.3MeV is well reproduced by both
shell-model calculations which amount to ΣB(M1, 1+ →
0+1 ) = 0.96µ2

N using the CA48MH1 Hamiltonian and to
ΣB(M1, 1+ → 0+1 ) = 0.89µ2

N with the GX1A Hamilto-
nian. The summed strength is very similar to that of
the neutron-magic (N = 28) 54Fe [19] and almost three
times larger than that of the N = 36 isotone 66Zn [24]
up to 9.3MeV. This increase is expected because proton
excitations across Z = 28 play an important role for M1
excitations of 64Ni, whereas this contribution is small for
66Zn, which already has two protons above the Z = 28
shell closure.

VI. SUMMARY AND OUTLOOK

Real-photon scattering experiments on 64Ni were per-
formed using both an energetically-continuous, mainly
unpolarized (bremsstrahlung) photon beam and a quasi-
monoenergetic, linearly-polarized γ-ray beam. This com-
bination enabled the firm (tentative) identification of 87
(8) E1, 23 (2) M1, and 11 dipole transitions of unknown
radiation character between 4.3MeV and 9.7MeV. For
11 observed transitions, neither the multipole order nor
the radiation character could be firmly assigned. Be-
cause of the use of a calibration standard during the
bremsstrahlung experiment, absolute energy-integrated
cross sections of transitions up to 9.3MeV were deduced
by combining both experiments. In addition to the anal-
ysis of individual transitions, average elastic cross sec-
tions σγγ were determined up to 9.2MeV. The contribu-
tions of the E1 and M1 channel with respect to the total
elastic cross section were calculated up to the neutron-
separation energy Sn = 9.7MeV of 64Ni. It was observed
that the E1 contribution is, in general, larger than the
M1 contribution although an accumulation of M1 tran-
sitions was observed between 7.5 and 8.5MeV.
Shell-model calculations were performed using two dif-
ferent Hamiltonians (CA48MH1 and GX1A). The result-
ing reduced M1 transition strengths B(M1, 1+ → 0+1 )
were compared to the experimentally deduced products



15

of reduced transition strength and ground-state decay
branching ratio B(M1, 1+ → 0+1 ) · Γ0/Γ of individual
transitions. Although, the agreement of the summed
strength between 4.3 and 9.3MeV is good for both cal-
culations with respect to the experimental value, the fine
structure, i.e., an accumulation of strength between 7.5
and 8.5MeV, is better reproduced by the shell-model cal-
culation carried out in the fp model space with the GX1A
Hamiltonian. The experimental summed strength is very
similar to that of the neutron-magic N = 28 nucleus
54Fe [19] and almost three times larger than that of the
N = 36 isotone 66Zn [24] up to 9.3MeV. Also, the cal-
culated M1 strength of 64Ni exceeds the one of 66Zn by
about 50%. Large M1 strengths are attributed to proton
excitations across the Z = 28 gap, including holes in the
1f7/2 orbital. These play an important role for excited

1+ states of 64Ni, whereas their contributions to states in
66Zn, which already has two protons above the Z = 28
shell closure, are smaller.
The average elastic cross section of the E1 channel and
an upper limit of the total photoabsorption cross section,
including decays to states other than the ground state,
were compared to calculations in the relativistic equa-
tion of motion REOM framework including 2q⊗ phonon
REOM2 and 2q⊗2phonon REOM3 configurations. It was
found that the inclusion of more complex configurations
leads to a lowering of the energy of a significant part of
the E1 strength. The E1 part of the photoabsorption
cross sections σγ,E1 extracted from the calculations were
compared to the NRF results. It was observed that the
REOM3 calculation describes the gross structures of the
average elastic cross section well, i.e., enhancements of
the cross section up to approximately 8.5MeV. At higher
energies, the energies of the enhancements are not as
well described, but nevertheless, similar structures can
be observed. Besides the good reproduction of the cross
section’s behavior, the absolute value of the REOM3 cal-
culation is approximately two times larger than the ex-
perimental value. Possible reasons for this discrepancy
can be found on both the experimental and theoretical
sides. On the one hand, for the estimate of the average
inelastic cross section, the non-constant photon distribu-
tion was neglected. This can be taken into account by

investigating γ − γ coincidence data, and extracting the
inelastic cross section in smaller energy steps than it was
done for the elastic cross section. On the other hand,
more mechanisms contributing to the strength formation
have to be included in the theory for a better description
of the experimental data.
For both radiation characters, the missing exact knowl-
edge of the inelastic decay channel makes comparisons to
theory difficult. Furthermore, a remeasurement at ener-
gies between 9.3MeV and Sn is important for conclusive
comparisons to, e.g., the (γ, n) data by Utsonomiya et
al. [60] with respect to a possible enhancement of E1
strength on top of the low-energy tail of the IVGDR in
the PDR region.
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[13] F. Schlüter, private communication.
[14] J. Endres et al., Phys. Rev. C 85, 064331 (2012).
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M. Müscher, J. Wilhelmy, and A. Zilges, Phys. Rev. Lett.
127, 242501 (2021).

[18] D. Savran et al., Physics Letters B 786, 16 (2018).
[19] R. Schwengner et al., Phys. Rev. C 101, 064303 (2020).
[20] T. Shizuma, T. Hayakawa, H. Ohgaki, H. Toyokawa,

T. Komatsubara, N. Kikuzawa, T. Inakura, M. Honma,
and H. Nakada, Phys. Rev. C 87, 024301 (2013).

[21] F. Bauwens, J. Bryssinck, D. De Frenne, K. Govaert,
L. Govor, M. Hagemann, J. Heyse, E. Jacobs, W. Mon-
delaers, and V. Y. Ponomarev, Phys. Rev. C 62, 024302
(2000).

[22] M. Scheck et al., Phys. Rev. C 87, 051304 (2013).
[23] M. Scheck et al., Phys. Rev. C 88, 044304 (2013).
[24] R. Schwengner et al., Phys. Rev. C 103, 024312 (2021).
[25] D. Savran et al., Phys. Rev. C 106, 044324 (2022).
[26] F. R. Metzger, Prog. Nucl. Phys. 7, 53 (1959).
[27] U. Kneissl, H. Pitz, and A. Zilges, Progress in Particle

and Nuclear Physics 37, 349 (1996).
[28] A. Zilges, D. Balabanski, J. Isaak, and N. Pietralla,

Progress in Particle and Nuclear Physics 122, 103903
(2022).

[29] N. Pietralla et al., Phys. Rev. Lett. 88, 012502 (2001).
[30] C. Romig et al., Phys. Rev. C 88, 044331 (2013).
[31] J. Isaak et al., Physics Letters B 727, 361 (2013).
[32] R. Schwengner et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 555, 211 (2005).
[33] H. R. Weller, M. W. Ahmed, H. Gao, W. Tornow, Y. K.

Wu, M. Gai, and R. Miskimen, Prog. Part. Nucl. Phys.
62, 257 (2009).
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